change hashing of VerifierData to constants.

This commit is contained in:
M Alghazwi 2025-03-20 10:45:03 +01:00
parent 190c6063f5
commit aa13ff3253
No known key found for this signature in database
GPG Key ID: 646E567CAD7DB607
6 changed files with 163 additions and 236 deletions

View File

@ -1,8 +1,8 @@
use std::marker::PhantomData;
use plonky2::hash::hash_types::RichField;
use plonky2::hash::hash_types::{HashOutTarget, RichField};
use plonky2::iop::witness::{PartialWitness, WitnessWrite};
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::circuit_data::{CircuitConfig, CircuitData, CommonCircuitData, VerifierCircuitTarget, VerifierOnlyCircuitData};
use plonky2::plonk::circuit_data::{CircuitConfig, CircuitData, CommonCircuitData, VerifierOnlyCircuitData};
use plonky2::plonk::config::{AlgebraicHasher, GenericConfig};
use plonky2::plonk::proof::{ProofWithPublicInputs, ProofWithPublicInputsTarget};
use plonky2_field::extension::Extendable;
@ -20,7 +20,8 @@ pub struct CompressionCircuit<
<C as GenericConfig<D>>::Hasher: AlgebraicHasher<F>
{
inner_common_data: CommonCircuitData<F, D>,
phantom_data: PhantomData<(C,H)>
inner_verifier_data: VerifierOnlyCircuitData<C, D>,
phantom_data: PhantomData<H>
}
#[derive(Clone, Debug)]
@ -28,7 +29,6 @@ pub struct CompressionTargets<
const D: usize,
>{
pub inner_proof: ProofWithPublicInputsTarget<D>,
pub verifier_data: VerifierCircuitTarget,
}
impl<
@ -39,9 +39,13 @@ impl<
> CompressionCircuit<F,D,C,H> where
<C as GenericConfig<D>>::Hasher: AlgebraicHasher<F>
{
pub fn new(inner_common_data: CommonCircuitData<F,D>) -> Self {
pub fn new(
inner_common_data: CommonCircuitData<F,D>,
inner_verifier_data: VerifierOnlyCircuitData<C, D>,
) -> Self {
Self{
inner_common_data,
inner_verifier_data,
phantom_data:PhantomData::default(),
}
}
@ -59,29 +63,29 @@ impl<
assert_eq!(inner_pub_input.len(), 8);
builder.register_public_inputs(&inner_pub_input[0..4]);
// virtual target for the verifier data
let inner_verifier_data = builder.add_virtual_verifier_data(inner_common.config.fri_config.cap_height);
// constant target for the verifier data
let const_verifier_data = builder.constant_verifier_data(&self.inner_verifier_data);
// register verifier data hash as public input.
let mut vd_pub_input = vec![];
vd_pub_input.extend_from_slice(&inner_verifier_data.circuit_digest.elements);
vd_pub_input.extend_from_slice(&const_verifier_data.circuit_digest.elements);
for i in 0..builder.config.fri_config.num_cap_elements() {
vd_pub_input.extend_from_slice(&inner_verifier_data.constants_sigmas_cap.0[i].elements);
vd_pub_input.extend_from_slice(&const_verifier_data.constants_sigmas_cap.0[i].elements);
}
let hash_inner_vd_pub_input = builder.hash_n_to_hash_no_pad::<H>(vd_pub_input);
let mut vd_to_hash = vec![];
vd_to_hash.extend_from_slice(&inner_pub_input[4..8]);
vd_to_hash.extend_from_slice(&hash_inner_vd_pub_input.elements);
let vd_hash = builder.hash_n_to_hash_no_pad::<H>(vd_to_hash);
builder.register_public_inputs(&vd_hash.elements);
// make sure the VerifierData we use is the same as the tree root hash of the VerifierData
builder.connect_hashes(hash_inner_vd_pub_input,HashOutTarget::from_vec(inner_pub_input[4..8].to_vec()));
builder.register_public_inputs(&hash_inner_vd_pub_input.elements);
// verify the proofs in-circuit
builder.verify_proof::<C>(&vir_proof, &inner_verifier_data, &inner_common);
builder.verify_proof::<C>(&vir_proof, &const_verifier_data, &inner_common);
// return targets
let t = CompressionTargets {
inner_proof: vir_proof,
verifier_data: inner_verifier_data,
};
Ok(t)
@ -92,7 +96,6 @@ impl<
&self, pw: &mut PartialWitness<F>,
targets: &CompressionTargets<D>,
inner_proof: ProofWithPublicInputs<F, C, D>,
verifier_only_data: &VerifierOnlyCircuitData<C, D>,
) -> Result<()> {
// assign the proof
pw.set_proof_with_pis_target(&targets.inner_proof, &inner_proof)
@ -100,12 +103,6 @@ impl<
CircuitError::ProofTargetAssignmentError("inner-proof".to_string(), e.to_string())
})?;
// assign the verifier data
pw.set_verifier_data_target(&targets.verifier_data, verifier_only_data)
.map_err(|e| {
CircuitError::VerifierDataTargetAssignmentError(e.to_string())
})?;
Ok(())
}

View File

@ -1,8 +1,8 @@
use std::marker::PhantomData;
use plonky2::hash::hash_types::RichField;
use plonky2::hash::hash_types::{HashOut, RichField};
use plonky2::iop::witness::{PartialWitness, WitnessWrite};
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::circuit_data::{CircuitConfig, CircuitData, CommonCircuitData, VerifierCircuitTarget, VerifierOnlyCircuitData};
use plonky2::plonk::circuit_data::{CircuitConfig, CircuitData, CommonCircuitData, VerifierOnlyCircuitData};
use plonky2::plonk::config::{AlgebraicHasher, GenericConfig};
use plonky2::plonk::proof::{ProofWithPublicInputs, ProofWithPublicInputsTarget};
use plonky2_field::extension::Extendable;
@ -21,7 +21,8 @@ pub struct LeafCircuit<
<C as GenericConfig<D>>::Hasher: AlgebraicHasher<F>
{
inner_common_data: CommonCircuitData<F, D>,
phantom_data: PhantomData<(C,H)>
inner_verifier_data: VerifierOnlyCircuitData<C, D>,
phantom_data: PhantomData<H>
}
#[derive(Clone, Debug)]
@ -29,7 +30,6 @@ pub struct LeafTargets <
const D: usize,
>{
pub inner_proof: Vec<ProofWithPublicInputsTarget<D>>,
pub verifier_data: VerifierCircuitTarget,
}
impl<
@ -41,9 +41,13 @@ impl<
> LeafCircuit<F,D,C,H,N> where
<C as GenericConfig<D>>::Hasher: AlgebraicHasher<F>
{
pub fn new(inner_common_data: CommonCircuitData<F,D>) -> Self {
pub fn new(
inner_common_data: CommonCircuitData<F,D>,
inner_verifier_data: VerifierOnlyCircuitData<C, D>,
) -> Self {
Self{
inner_common_data,
inner_verifier_data,
phantom_data:PhantomData::default(),
}
}
@ -67,27 +71,21 @@ impl<
let hash_inner_pub_input = builder.hash_n_to_hash_no_pad::<H>(pub_input);
builder.register_public_inputs(&hash_inner_pub_input.elements);
// virtual target for the verifier data
let inner_verifier_data = builder.add_virtual_verifier_data(inner_common.config.fri_config.cap_height);
// pad the public input with constants so that it shares the same structure as the node
let zero_hash = builder.constant_hash(HashOut::<F>::default());
builder.register_public_inputs(&zero_hash.elements);
// register verifier data hash as public input.
let mut vd_pub_input = vec![];
vd_pub_input.extend_from_slice(&inner_verifier_data.circuit_digest.elements);
for i in 0..builder.config.fri_config.num_cap_elements() {
vd_pub_input.extend_from_slice(&inner_verifier_data.constants_sigmas_cap.0[i].elements);
}
let hash_inner_vd_pub_input = builder.hash_n_to_hash_no_pad::<H>(vd_pub_input);
builder.register_public_inputs(&hash_inner_vd_pub_input.elements);
// virtual constant target for the verifier data
let const_verifier_data = builder.constant_verifier_data(&self.inner_verifier_data);
// verify the proofs in-circuit
for i in 0..N {
builder.verify_proof::<C>(&vir_proofs[i], &inner_verifier_data, &inner_common);
builder.verify_proof::<C>(&vir_proofs[i], &const_verifier_data, &inner_common);
}
// return targets
let t = LeafTargets {
inner_proof: vir_proofs,
verifier_data: inner_verifier_data,
};
Ok(t)
@ -98,7 +96,6 @@ impl<
&self, pw: &mut PartialWitness<F>,
targets: &LeafTargets<D>,
inner_proof: &[ProofWithPublicInputs<F, C, D>],
verifier_only_data: &VerifierOnlyCircuitData<C, D>,
) -> Result<()> {
assert_eq!(inner_proof.len(), N);
// assign the proofs
@ -109,12 +106,6 @@ impl<
})?;
}
// assign the verifier data
pw.set_verifier_data_target(&targets.verifier_data, verifier_only_data)
.map_err(|e| {
CircuitError::VerifierDataTargetAssignmentError(e.to_string())
})?;
Ok(())
}

View File

@ -1,5 +1,6 @@
use std::marker::PhantomData;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::target::BoolTarget;
use plonky2::iop::witness::{PartialWitness, WitnessWrite};
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::circuit_data::{CircuitConfig, CircuitData, CommonCircuitData, VerifierCircuitTarget, VerifierOnlyCircuitData};
@ -8,7 +9,7 @@ use plonky2::plonk::proof::{ProofWithPublicInputs, ProofWithPublicInputsTarget};
use plonky2_field::extension::Extendable;
use plonky2_poseidon2::poseidon2_hash::poseidon2::Poseidon2;
use crate::{error::CircuitError,Result};
use crate::circuits::utils::vec_to_array;
// use crate::circuits::utils::vec_to_array;
/// recursion node circuit - verifies M leaf proofs
#[derive(Clone, Debug)]
@ -21,8 +22,9 @@ pub struct NodeCircuit<
> where
<C as GenericConfig<D>>::Hasher: AlgebraicHasher<F>
{
leaf_common_data: CommonCircuitData<F, D>,
phantom_data: PhantomData<(C,H)>
common_data: CommonCircuitData<F, D>,
leaf_verifier_data: VerifierOnlyCircuitData<C, D>,
phantom_data: PhantomData<H>
}
#[derive(Clone, Debug)]
@ -30,7 +32,8 @@ pub struct NodeTargets<
const D: usize,
>{
pub leaf_proofs: Vec<ProofWithPublicInputsTarget<D>>,
pub verifier_data: VerifierCircuitTarget,
pub node_verifier_data: VerifierCircuitTarget,
pub condition: BoolTarget,
}
impl<
@ -43,9 +46,13 @@ impl<
<C as GenericConfig<D>>::Hasher: AlgebraicHasher<F>
{
pub fn new(inner_common_data: CommonCircuitData<F,D>) -> Self {
pub fn new(
common_data: CommonCircuitData<F,D>,
leaf_verifier_data: VerifierOnlyCircuitData<C, D>,
) -> Self {
Self{
leaf_common_data: inner_common_data,
common_data,
leaf_verifier_data,
phantom_data:PhantomData::default(),
}
}
@ -53,7 +60,7 @@ impl<
/// build the leaf circuit
pub fn build(&self, builder: &mut CircuitBuilder<F, D>) -> Result<NodeTargets<D>> {
let inner_common = self.leaf_common_data.clone();
let inner_common = self.common_data.clone();
// assert public input is of size 8 - 2 hashout
assert_eq!(inner_common.num_public_inputs, 8);
@ -61,13 +68,11 @@ impl<
// the proof virtual targets - M proofs
let mut vir_proofs = vec![];
let mut pub_input = vec![];
let mut inner_vd_hashes = vec![];
for _i in 0..M {
let vir_proof = builder.add_virtual_proof_with_pis(&inner_common);
let inner_pub_input = vir_proof.public_inputs.clone();
vir_proofs.push(vir_proof);
pub_input.extend_from_slice(&inner_pub_input[0..4]);
inner_vd_hashes.extend_from_slice(&inner_pub_input[4..8]);
}
// hash the public input & make it public
@ -75,22 +80,34 @@ impl<
builder.register_public_inputs(&hash_inner_pub_input.elements);
// virtual target for the verifier data
let inner_verifier_data = builder.add_virtual_verifier_data(inner_common.config.fri_config.cap_height);
let node_verifier_data = builder.add_virtual_verifier_data(inner_common.config.fri_config.cap_height);
// register verifier data hash as public input. H(H_l, H_l, H_n) -> public input
// virtual target for the verifier data
let const_leaf_verifier_data = builder.constant_verifier_data(&self.leaf_verifier_data);
// register only the node verifier data hash as public input.
let mut vd_pub_input = vec![];
vd_pub_input.extend_from_slice(&inner_verifier_data.circuit_digest.elements);
vd_pub_input.extend_from_slice(&node_verifier_data.circuit_digest.elements);
for i in 0..builder.config.fri_config.num_cap_elements() {
vd_pub_input.extend_from_slice(&inner_verifier_data.constants_sigmas_cap.0[i].elements);
vd_pub_input.extend_from_slice(&node_verifier_data.constants_sigmas_cap.0[i].elements);
}
let vd_hash = builder.hash_n_to_hash_no_pad::<H>(vd_pub_input);
inner_vd_hashes.extend_from_slice(&vd_hash.elements);
let vd_hash_all = builder.hash_n_to_hash_no_pad::<H>(inner_vd_hashes);
builder.register_public_inputs(&vd_hash_all.elements);
builder.register_public_inputs(&vd_hash.elements);
// condition for switching between node and leaf
let condition = builder.add_virtual_bool_target_safe();
// true -> node, false -> leaf
let selected_vd = builder.select_verifier_data(condition.clone(), &node_verifier_data, &const_leaf_verifier_data);
// verify the proofs in-circuit - M proofs
for i in 0..M {
builder.verify_proof::<C>(&vir_proofs[i], &inner_verifier_data, &inner_common);
builder.verify_proof::<C>(&vir_proofs[i], &selected_vd, &inner_common);
}
// Make sure we have every gate to match `common_data`.
for g in &inner_common.gates {
builder.add_gate_to_gate_set(g.clone());
}
// let proofs = vec_to_array::<2, ProofWithPublicInputsTarget<D>>(vir_proofs)?;
@ -98,7 +115,8 @@ impl<
// return targets
let t = NodeTargets {
leaf_proofs: vir_proofs,
verifier_data: inner_verifier_data,
node_verifier_data,
condition,
};
Ok(t)
@ -110,6 +128,7 @@ impl<
targets: &NodeTargets<D>,
node_proofs: &[ProofWithPublicInputs<F, C, D>],
verifier_only_data: &VerifierOnlyCircuitData<C, D>,
condition: bool,
) -> Result<()> {
// assert size of proofs vec
assert_eq!(node_proofs.len(), M);
@ -123,11 +142,15 @@ impl<
}
// assign the verifier data
pw.set_verifier_data_target(&targets.verifier_data, &verifier_only_data)
pw.set_verifier_data_target(&targets.node_verifier_data, &verifier_only_data)
.map_err(|e| {
CircuitError::VerifierDataTargetAssignmentError(e.to_string())
})?;
// assign the condition
pw.set_bool_target(targets.condition, condition)
.map_err(|e| CircuitError::BoolTargetAssignmentError("condition".to_string(), e.to_string()))?;
Ok(())
}

View File

@ -1,9 +1,9 @@
use std::marker::PhantomData;
use plonky2::hash::hash_types::{HashOut, HashOutTarget, RichField};
use plonky2::hash::hash_types::{ HashOutTarget, RichField};
use plonky2::iop::target::Target;
use plonky2::iop::witness::{PartialWitness, WitnessWrite};
use plonky2::plonk::circuit_builder::{CircuitBuilder};
use plonky2::plonk::circuit_data::{CommonCircuitData, VerifierCircuitData, VerifierCircuitTarget};
use plonky2::plonk::circuit_data::{CommonCircuitData, VerifierOnlyCircuitData};
use plonky2::plonk::config::{AlgebraicHasher, GenericConfig};
use plonky2::plonk::proof::{ProofWithPublicInputs, ProofWithPublicInputsTarget};
use plonky2_field::extension::Extendable;
@ -29,20 +29,15 @@ pub struct PublicInputVerificationCircuit<
<C as GenericConfig<D>>::Hasher: AlgebraicHasher<F>,
{
pub node_common_data: CommonCircuitData<F, D>,
phantom: PhantomData<(C, H)>,
pub node_verifier_data: VerifierOnlyCircuitData<C, D>,
phantom: PhantomData<H>,
}
/// Holds the virtual targets for the circuit.
/// - `inner_proof`: the proof to be verified and contains the public input to be verified.
/// - `inner_pub_inputs`: A nested vector of targets with dimensions T×K.
/// - `node_verifier_data`: Verifier data for the node circuit.
/// - `leaf_verifier_data`: Verifier data for the leaf circuit.
/// - `inner_verifier_data`: Verifier data for the inner circuit.
pub struct PublicInputVerificationTargets<const D: usize> {
pub inner_proof: ProofWithPublicInputsTarget<D>,
pub node_verifier_data: VerifierCircuitTarget,
pub leaf_verifier_data: HashOutTarget,
pub inner_verifier_data: HashOutTarget,
pub inner_pub_inputs: Vec<Vec<Target>>,
}
@ -55,13 +50,17 @@ PublicInputVerificationCircuit<F, D, C, H, N, M, T, K>
<C as GenericConfig<D>>::Hasher: AlgebraicHasher<F>,
{
/// Create a new instance of the circuit.
pub fn new(node_common_data: CommonCircuitData<F, D>) -> Self {
pub fn new(
node_common_data: CommonCircuitData<F, D>,
node_verifier_data: VerifierOnlyCircuitData<C, D>,
) -> Self {
// we expect exactly 8 public inputs from the tree root proof
// 4 for the final aggregated public-input hash, 4 for the final aggregated verifier-data hash
// 4 for the final aggregated public-input hash, 4 for the node verifier-data hash
assert_eq!(node_common_data.num_public_inputs, 8);
Self {
node_common_data,
node_verifier_data,
phantom: PhantomData,
}
}
@ -69,19 +68,17 @@ PublicInputVerificationCircuit<F, D, C, H, N, M, T, K>
/// Builds the circuit by:
/// 1. Verifies a proof target with 8 public inputs (the final [pi_hash, vd_hash]).
/// 2. verifies correct tree hashing of all T×K targets to represent all inner public inputs.
/// 3. verifies correct tree hashing of node_verifier_date leaf_verifier_data and inner_verifier_data (each 4 field elements).
/// 3. verifies correct node_verifier_date used is the same as in public input (last 4 field elements).
pub fn build(&self, builder: &mut CircuitBuilder<F, D>) -> Result<PublicInputVerificationTargets<D>> {
// Add a virtual proof with 8 public inputs. This is the final root proof whose
// public inputs we want to check in-circuit.
// public inputs we want to check in-circuit.
let inner_proof = builder.add_virtual_proof_with_pis(&self.node_common_data);
// Create a VerifierCircuitTarget for the node's verifier data (unhashed).
let node_verifier_data = builder.add_virtual_verifier_data(
self.node_common_data.config.fri_config.cap_height
);
// Create a constant VerifierCircuitTarget for the node's verifier data.
let const_node_vd = builder.constant_verifier_data(&self.node_verifier_data);
// verify the proof
builder.verify_proof::<C>(&inner_proof, &node_verifier_data, &self.node_common_data);
builder.verify_proof::<C>(&inner_proof, &const_node_vd, &self.node_common_data);
// create T×K targets for all inner public inputs from the base level.
let mut inner_pub_inputs = Vec::with_capacity(T);
@ -97,34 +94,30 @@ PublicInputVerificationCircuit<F, D, C, H, N, M, T, K>
// Summary of the logic:
//
// let final_pi = proof.public_inputs[0..4];
// let final_vd = proof.public_inputs[4..8];
// let node_vd = proof.public_inputs[4..8];
// ...
// leaf-level pub inputs tree hashing: chunks of N -> hash -> combine with inner_verifier_data
// node-level pub inputs tree hashing: chunks of M -> hash -> combine with either leaf_hash (only level 0) or node_hash
// leaf-level pub inputs tree hashing: chunks of N -> hash
// node-level pub inputs tree hashing: chunks of M -> hash
// ...
// check final result matches final_pi, final_vd
// check final result matches final_pi
// ------------------------------------------------------------------
// Extract the final 4 field elements for the public-input hash & next 4 for the verifier-data hash.
let final_pi_hash_t = &inner_proof.public_inputs[0..4];
let final_vd_hash_t = &inner_proof.public_inputs[4..8];
let node_vd_hash_t = &inner_proof.public_inputs[4..8];
// Compute node_hash in-circuit
let mut node_vd_input_t = Vec::new();
node_vd_input_t.extend_from_slice(&node_verifier_data.circuit_digest.elements);
for cap_elem in node_verifier_data.constants_sigmas_cap.0.iter() {
node_vd_input_t.extend_from_slice(&const_node_vd.circuit_digest.elements);
for cap_elem in const_node_vd.constants_sigmas_cap.0.iter() {
node_vd_input_t.extend_from_slice(&cap_elem.elements);
}
let node_hash_t = builder.hash_n_to_hash_no_pad::<H>(node_vd_input_t);
// make sure the VerifierData we use is the same as the tree root hash of the VerifierData
builder.connect_hashes(node_hash_t,HashOutTarget::from_vec(node_vd_hash_t.to_vec()));
builder.register_public_inputs(&node_hash_t.elements); // public input
let mut pub_in_hashes_t = Vec::new();
let mut vd_hashes_t = Vec::new();
// hash targets for the leaf and inner circuit's verifier data.
let leaf_hash_t = builder.add_virtual_hash_public_input(); // public input
let inner_hash_t = builder.add_virtual_hash_public_input(); // public input
// Leaf level hashing: chunks of N
let base_chunks = T / N; // T is assumed to be multiple of N
@ -139,20 +132,15 @@ PublicInputVerificationCircuit<F, D, C, H, N, M, T, K>
// track these in vectors
pub_in_hashes_t.push(pi_hash_chunk);
vd_hashes_t.push(inner_hash_t);
}
// Now at the node level:
let mut level = 0;
let mut current_len = base_chunks;
while current_len > 1 {
let next_len = (current_len + (M - 1)) / M;
let mut next_pub_in_hashes_t = Vec::with_capacity(next_len);
let mut next_vd_hashes_t = Vec::with_capacity(next_len);
for i in 0..next_len {
let start_idx = i * M;
@ -164,44 +152,24 @@ PublicInputVerificationCircuit<F, D, C, H, N, M, T, K>
pi_flat.extend_from_slice(&pub_in_hashes_t[j].elements);
}
let pi_hash = builder.hash_n_to_hash_no_pad::<H>(pi_flat);
// flatten all vd_hashes in [start_idx..end_idx]
let mut vd_flat = Vec::with_capacity((end_idx - start_idx) * 4);
for j in start_idx..end_idx {
vd_flat.extend_from_slice(&vd_hashes_t[j].elements);
}
// use leaf_hash if level == 0, else node_hash
let hash_n_t = if level == 0 { leaf_hash_t } else { node_hash_t };
vd_flat.extend_from_slice(&hash_n_t.elements);
let vd_hash = builder.hash_n_to_hash_no_pad::<H>(vd_flat);
next_pub_in_hashes_t.push(pi_hash);
next_vd_hashes_t.push(vd_hash);
}
pub_in_hashes_t = next_pub_in_hashes_t;
vd_hashes_t = next_vd_hashes_t;
current_len = next_len;
level += 1;
}
// now have exactly one pub_in_hash and one vd_hash
// now have exactly one pub_in_hash
let final_computed_pi_t = &pub_in_hashes_t[0];
let final_computed_vd_t = &vd_hashes_t[0];
// connect them to the final 8 public inputs of `inner_proof`.
// connect them to the final 4 public inputs of `inner_proof`.
for i in 0..4 {
builder.connect(final_pi_hash_t[i], final_computed_pi_t.elements[i]);
builder.connect(final_vd_hash_t[i], final_computed_vd_t.elements[i]);
}
// return all the targets
Ok(PublicInputVerificationTargets {
inner_proof,
node_verifier_data,
leaf_verifier_data: leaf_hash_t,
inner_verifier_data: inner_hash_t,
inner_pub_inputs,
})
}
@ -209,18 +177,12 @@ PublicInputVerificationCircuit<F, D, C, H, N, M, T, K>
/// Assigns witness values to the targets.
/// - `inner_proof`: The tree root proof with 8 public inputs [pi_hash, vd_hash].
/// - `inner_pub_inputs_vals`: T×K public input values from inner proofs.
/// - `node_verifier_data`: node verifier data
/// - `leaf_verifier_data`: leaf circuits verifier data.
/// - `inner_verifier_data`:inner-circuits verifier data.
pub fn assign_targets(
&self,
pw: &mut PartialWitness<F>,
targets: &PublicInputVerificationTargets<D>,
inner_proof: ProofWithPublicInputs<F, C, D>,
inner_pub_inputs_vals: Vec<Vec<F>>,
node_verifier_data: &VerifierCircuitData<F, C, D>,
leaf_verifier_data: &VerifierCircuitData<F, C, D>,
inner_verifier_data: &VerifierCircuitData<F, C, D>,
) -> Result<()> {
// Assign the final proof - it should have 8 public inputs
pw.set_proof_with_pis_target(&targets.inner_proof, &inner_proof)
@ -252,38 +214,6 @@ PublicInputVerificationCircuit<F, D, C, H, N, M, T, K>
}
}
// Assign the node verifier data
pw.set_verifier_data_target(&targets.node_verifier_data, &node_verifier_data.verifier_only)
.map_err(|e| {
CircuitError::VerifierDataTargetAssignmentError(e.to_string())
})?;
// Assign the leaf circuits verifier data
let leaf_hash = Self::get_hash_of_verifier_data(leaf_verifier_data);
pw.set_hash_target(targets.leaf_verifier_data, leaf_hash).map_err(|e| {
CircuitError::HashTargetAssignmentError("leaf verifier data hash".to_string(), e.to_string())
})?;
// Assign the inner circuits verifier data
let inner_hash = Self::get_hash_of_verifier_data(inner_verifier_data);
pw.set_hash_target(targets.inner_verifier_data, inner_hash).map_err(|e| {
CircuitError::HashTargetAssignmentError("inner verifier data hash".to_string(), e.to_string())
})?;
Ok(())
}
/// helper fn to generate hash of verifier data
fn get_hash_of_verifier_data(verifier_data: &VerifierCircuitData<F, C, D>) -> HashOut<F>{
let mut vd = vec![];
let digest: &HashOut<F> = &verifier_data.verifier_only.circuit_digest;
let caps = &verifier_data.verifier_only.constants_sigmas_cap;
vd.extend_from_slice(&digest.elements);
for i in 0..verifier_data.common.config.fri_config.num_cap_elements() {
let cap_hash = caps.0[i] as HashOut<F>;
vd.extend_from_slice(&cap_hash.elements);
}
H::hash_no_pad(&vd)
}
}

View File

@ -46,13 +46,14 @@ impl<
{
pub fn build(
inner_common_data: CommonCircuitData<F,D>
inner_common_data: CommonCircuitData<F,D>,
inner_verifier_data: VerifierOnlyCircuitData<C, D>,
) -> Result<Self> {
// build leaf with standard recursion config
let config = CircuitConfig::standard_recursion_config();
let mut builder = CircuitBuilder::<F, D>::new(config);
let leaf = LeafCircuit::<_,D,_,_,N>::new(inner_common_data.clone());
let leaf = LeafCircuit::<_,D,_,_,N>::new(inner_common_data.clone(), inner_verifier_data.clone());
let leaf_targets = leaf.build(&mut builder)?;
let leaf_circ_data = builder.build::<C>();
// println!("leaf circuit size = {:?}", leaf_circ_data.common.degree_bits());
@ -61,7 +62,7 @@ impl<
let config = CircuitConfig::standard_recursion_config();
let mut builder = CircuitBuilder::<F, D>::new(config);
let node = NodeCircuit::<_,D,_,_,M>::new(leaf_circ_data.common.clone());
let node = NodeCircuit::<_,D,_,_,M>::new(leaf_circ_data.common.clone(), leaf_circ_data.verifier_only.clone());
let node_targets = node.build(&mut builder)?;
let node_circ_data = builder.build::<C>();
// println!("node circuit size = {:?}", node_circ_data.common.degree_bits());
@ -70,7 +71,7 @@ impl<
let config = CircuitConfig::standard_recursion_config();
let mut builder = CircuitBuilder::<F, D>::new(config);
let node_common = node_circ_data.common.clone();
let compression_circ = CompressionCircuit::new(node_common);
let compression_circ = CompressionCircuit::new(node_common, node_circ_data.verifier_only.clone());
let compression_targets = compression_circ.build(&mut builder)?;
let compression_circ_data = builder.build::<C>();
// println!("compress circuit size = {:?}", compression_circ_data.common.degree_bits());
@ -108,13 +109,12 @@ impl<
pub fn prove_tree_and_compress(
&mut self,
proofs_with_pi: &[ProofWithPublicInputs<F, C, D>],
inner_verifier_only_data: &VerifierOnlyCircuitData<C, D>,
) -> Result<(ProofWithPublicInputs<F, C, D>)>
{
let proof =
self.prove_tree(proofs_with_pi, inner_verifier_only_data)?;
self.prove_tree(proofs_with_pi)?;
let mut pw = PartialWitness::<F>::new();
self.compression.assign_targets(&mut pw, &self.compression_targets, proof, &self.node_circ_data.verifier_only)?;
self.compression.assign_targets(&mut pw, &self.compression_targets, proof)?;
self.compression_circ_data.prove(pw).map_err(
|e| CircuitError::InvalidProofError(e.to_string())
@ -125,7 +125,6 @@ impl<
(
&mut self,
proofs_with_pi: &[ProofWithPublicInputs<F, C, D>],
inner_verifier_only_data: &VerifierOnlyCircuitData<C, D>,
) -> Result<(ProofWithPublicInputs<F, C, D>)>
{
if proofs_with_pi.len() % 2 != 0 {
@ -137,12 +136,11 @@ impl<
// process leaves
let leaf_proofs = self.get_leaf_proofs(
proofs_with_pi,
inner_verifier_only_data,
)?;
// process nodes
let (root_proof, vd) =
self.prove(&leaf_proofs,&self.leaf_circ_data.verifier_only)?;
let (root_proof, _vd) =
self.prove(&leaf_proofs,&self.leaf_circ_data.verifier_only, 0)?;
Ok(root_proof)
}
@ -151,7 +149,6 @@ impl<
(
&mut self,
proofs_with_pi: &[ProofWithPublicInputs<F, C, D>],
inner_verifier_only_data: &VerifierOnlyCircuitData<C, D>,
) -> Result<(Vec<ProofWithPublicInputs<F, C, D>>)> {
let mut leaf_proofs = vec![];
@ -159,7 +156,7 @@ impl<
for proof in proofs_with_pi.chunks(N){
let mut pw = PartialWitness::<F>::new();
self.leaf.assign_targets(&mut pw,&self.leaf_targets,proof,inner_verifier_only_data)?;
self.leaf.assign_targets(&mut pw,&self.leaf_targets,proof)?;
let proof = self.leaf_circ_data.prove(pw).unwrap();
leaf_proofs.push(proof);
}
@ -172,6 +169,7 @@ impl<
&self,
proofs_with_pi: &[ProofWithPublicInputs<F, C, D>],
verifier_only_data: &VerifierOnlyCircuitData<C, D>,
level: usize,
) -> Result<(ProofWithPublicInputs<F, C, D>, VerifierOnlyCircuitData<C, D>)> where
<C as GenericConfig<D>>::Hasher: AlgebraicHasher<F>
{
@ -182,6 +180,8 @@ impl<
let mut new_proofs = vec![];
let condition = if level == 0 {false} else {true};
for chunk in proofs_with_pi.chunks(M) {
let mut inner_pw = PartialWitness::new();
@ -191,6 +191,7 @@ impl<
&self.node_targets,
chunk,
verifier_only_data,
condition
)?;
let proof = self.node_circ_data.prove(inner_pw)
@ -198,7 +199,7 @@ impl<
new_proofs.push(proof);
}
self.prove(&new_proofs, &self.node_circ_data.verifier_only)
self.prove(&new_proofs, &self.node_circ_data.verifier_only, level+1)
}
pub fn verify_proof(
@ -219,18 +220,17 @@ impl<
&self,
proof: ProofWithPublicInputs<F, C, D>,
inner_public_input: Vec<Vec<F>>,
inner_verifier_data: &VerifierCircuitData<F, C, D>,
is_compressed: bool,
) -> Result<()>{
let public_input = proof.public_inputs.clone();
if is_compressed{
self.compression_circ_data.verify(proof)
.map_err(|e| CircuitError::InvalidProofError(e.to_string()))?;
self.verify_public_input(public_input, inner_public_input, inner_verifier_data, is_compressed)
self.verify_public_input(public_input, inner_public_input)
}else {
self.node_circ_data.verify(proof)
.map_err(|e| CircuitError::InvalidProofError(e.to_string()))?;
self.verify_public_input(public_input, inner_public_input, inner_verifier_data, is_compressed)
self.verify_public_input(public_input, inner_public_input)
}
}
@ -238,23 +238,15 @@ impl<
&self,
public_input: Vec<F>,
inner_public_input: Vec<Vec<F>>,
inner_verifier_data: &VerifierCircuitData<F, C, D>,
is_compressed: bool,
) -> Result<()>{
assert_eq!(public_input.len(), 8);
let given_input_hash = &public_input[0..4];
let given_vd_hash = &public_input[4..8];
let inner_hash = Self::get_hash_of_verifier_data(&inner_verifier_data);
let leaf_hash = Self::get_hash_of_verifier_data(&self.leaf_circ_data.verifier_data());
let node_hash = Self::get_hash_of_verifier_data(&self.node_circ_data.verifier_data());
let node_hash = get_hash_of_verifier_data::<F,D,C,H>(&self.node_circ_data.verifier_data());
let mut pub_in_hashes = vec![];
let mut inner_vd_hashes = vec![];
for pub_in in inner_public_input.chunks(N){
let pub_in_flat: Vec<F> = pub_in
.iter()
@ -262,64 +254,50 @@ impl<
.collect();
let hash = H::hash_no_pad(&pub_in_flat);
pub_in_hashes.push(hash);
inner_vd_hashes.push(inner_hash.clone());
}
let mut level = 0;
while pub_in_hashes.len() > 1 {
let mut next_level_pi_hashes = Vec::new();
let mut next_level_vd_hashes = Vec::new();
for (pi_chunk, vd_chunk) in pub_in_hashes.chunks(M).zip(inner_vd_hashes.chunks(M)) {
for pi_chunk in pub_in_hashes.chunks(M) {
// collect field elements
let pi_chunk_f: Vec<F> = pi_chunk.iter()
.flat_map(|h| h.elements.iter().cloned())
.collect();
let mut vd_chunk_f: Vec<F> = vd_chunk.iter()
.flat_map(|h| h.elements.iter().cloned())
.collect();
let hash_n = if level == 0 {leaf_hash} else{node_hash};
vd_chunk_f.extend_from_slice(&hash_n.elements);
// Compute Poseidon2 hash of the concatenated chunk
// Compute hash of the concatenated chunk
let pi_hash = H::hash_no_pad(&pi_chunk_f);
let vd_hash = H::hash_no_pad(&vd_chunk_f);
next_level_pi_hashes.push(pi_hash);
next_level_vd_hashes.push(vd_hash);
}
pub_in_hashes = next_level_pi_hashes;
inner_vd_hashes = next_level_vd_hashes;
level +=1;
}
//check expected hash
let expected_pi_hash = pub_in_hashes[0];
let mut expected_vd_hash = inner_vd_hashes[0];
if is_compressed {
let mut vd_to_hash = vec![];
vd_to_hash.extend_from_slice(&expected_vd_hash.elements);
vd_to_hash.extend_from_slice(&node_hash.elements);
expected_vd_hash = H::hash_no_pad(&vd_to_hash);
}
assert_eq!(given_input_hash, expected_pi_hash.elements);
assert_eq!(given_vd_hash, expected_vd_hash.elements);
assert_eq!(given_vd_hash, node_hash.elements);
Ok(())
}
/// helper fn to generate hash of verifier data
fn get_hash_of_verifier_data(verifier_data: &VerifierCircuitData<F, C, D>) -> HashOut<F>{
let mut vd = vec![];
let digest: &HashOut<F> = &verifier_data.verifier_only.circuit_digest;
let caps = &verifier_data.verifier_only.constants_sigmas_cap;
vd.extend_from_slice(&digest.elements);
for i in 0..verifier_data.common.config.fri_config.num_cap_elements() {
let cap_hash = caps.0[i] as HashOut<F>;
vd.extend_from_slice(&cap_hash.elements);
}
H::hash_no_pad(&vd)
}
}
/// helper fn to generate hash of verifier data
pub fn get_hash_of_verifier_data<
F: RichField + Extendable<D> + Poseidon2,
const D: usize,
C: GenericConfig<D, F = F>,
H: AlgebraicHasher<F>,
>(verifier_data: &VerifierCircuitData<F, C, D>) -> HashOut<F> where
<C as GenericConfig<D>>::Hasher: AlgebraicHasher<F>
{
let mut vd = vec![];
let digest: &HashOut<F> = &verifier_data.verifier_only.circuit_digest;
let caps = &verifier_data.verifier_only.constants_sigmas_cap;
vd.extend_from_slice(&digest.elements);
for i in 0..verifier_data.common.config.fri_config.num_cap_elements() {
let cap_hash = caps.0[i] as HashOut<F>;
vd.extend_from_slice(&cap_hash.elements);
}
H::hash_no_pad(&vd)
}

View File

@ -13,6 +13,7 @@ mod tests {
use crate::params::Params;
use codex_plonky2_circuits::recursion::uniform::{tree::TreeRecursion};
use codex_plonky2_circuits::recursion::uniform::pi_verifier::PublicInputVerificationCircuit;
use codex_plonky2_circuits::recursion::uniform::tree::get_hash_of_verifier_data;
#[test]
fn test_uniform_recursion() -> anyhow::Result<()> {
@ -42,25 +43,25 @@ mod tests {
const N: usize = 1;
const M: usize = 2;
let mut tree = TreeRecursion::<F,D,C,HF, N, M>::build(inner_data.common.clone())?;
let mut tree = TreeRecursion::<F,D,C,HF, N, M>::build(inner_data.common.clone(), inner_data.verifier_only.clone())?;
let root = tree.prove_tree(&proofs, &inner_data.verifier_only)?;
let root = tree.prove_tree(&proofs)?;
println!("pub input size = {}", root.public_inputs.len());
println!("proof size = {:?} bytes", root.to_bytes().len());
let root_compressed = tree.prove_tree_and_compress(&proofs, &inner_data.verifier_only)?;
let root_compressed = tree.prove_tree_and_compress(&proofs)?;
println!("pub input size (compressed) = {}", root_compressed.public_inputs.len());
println!("proof size compressed = {:?} bytes", root_compressed.to_bytes().len());
let inner_pi: Vec<Vec<F>> = proofs.iter().map(|p| p.public_inputs.clone()).collect();
assert!(
tree.verify_proof_and_public_input(root,inner_pi.clone(),&inner_data.verifier_data(), false).is_ok(),
tree.verify_proof_and_public_input(root,inner_pi.clone(), false).is_ok(),
"proof verification failed"
);
assert!(
tree.verify_proof_and_public_input(root_compressed,inner_pi,&inner_data.verifier_data(), true).is_ok(),
tree.verify_proof_and_public_input(root_compressed,inner_pi, true).is_ok(),
"compressed proof verification failed"
);
@ -99,22 +100,22 @@ mod tests {
const N: usize = 1;
const M: usize = 2;
let mut tree = TreeRecursion::<F,D,C,HF, N, M>::build(inner_data.common.clone())?;
let mut tree = TreeRecursion::<F,D,C,HF, N, M>::build(inner_data.common.clone(), inner_data.verifier_only.clone())?;
let root = tree.prove_tree(&proofs, &inner_data.verifier_only)?;
let root = tree.prove_tree(&proofs)?;
println!("pub input size = {}", root.public_inputs.len());
println!("proof size = {:?} bytes", root.to_bytes().len());
let inner_pi: Vec<Vec<F>> = proofs.iter().map(|p| p.public_inputs.clone()).collect();
assert!(
tree.verify_proof_and_public_input(root.clone(),inner_pi.clone(),&inner_data.verifier_data(), false).is_ok(),
tree.verify_proof_and_public_input(root.clone(),inner_pi.clone(), false).is_ok(),
"proof verification failed"
);
// ------------------- Public input verifier Circuit --------------------
let pi_verifier_circ = PublicInputVerificationCircuit::<F, D, C, HF, N, M, T, K>::new(tree.get_node_common_data());
let pi_verifier_circ = PublicInputVerificationCircuit::<F, D, C, HF, N, M, T, K>::new(tree.get_node_common_data(), tree.get_node_verifier_data().verifier_only);
let config = CircuitConfig::standard_recursion_config();
let mut builder = CircuitBuilder::<F, D>::new(config);
@ -125,7 +126,7 @@ mod tests {
let mut pw = PartialWitness::<F>::new();
pi_verifier_circ.assign_targets(&mut pw, &pi_tarq, root, inner_pi.clone(), &tree.get_node_verifier_data(), &tree.get_leaf_verifier_data(), &inner_data.verifier_data())?;
pi_verifier_circ.assign_targets(&mut pw, &pi_tarq, root, inner_pi.clone())?;
let proof = pi_circ_data.prove(pw)?;
println!("pub input size = {}", proof.public_inputs.len());
@ -134,13 +135,20 @@ mod tests {
let pub_input_flat: Vec<F> = inner_pi.iter().cloned().flatten().collect();
let num_pi = proof.public_inputs.len();
// sanity check
// sanity check on public input
for (i, e) in proof.public_inputs.iter().enumerate(){
if i < pub_input_flat.len() {
assert_eq!(*e, pub_input_flat[i])
}
}
// sanity check on the verifier data
let hashed_node_vd = get_hash_of_verifier_data::<F,D,C,HF>(&tree.get_node_verifier_data());
for (i, &e) in proof.public_inputs[proof.public_inputs.len()-4 ..].iter().enumerate(){
assert_eq!(e, hashed_node_vd.elements[i])
}
assert!(
pi_circ_data.verify(proof).is_ok(),
"pi-verifier proof verification failed"