252 lines
9.2 KiB
Rust
Raw Normal View History

2025-01-09 10:36:05 +01:00
// Cyclic approach to recursion where at each cycle you verify previous proof
// and run the inner circuit -> resulting in one proof that again can be fed
// into another cyclic circle.
use hashbrown::HashMap;
use plonky2::hash::hash_types::{HashOut, HashOutTarget, RichField};
use plonky2::iop::target::{BoolTarget, Target};
use plonky2::iop::witness::{PartialWitness, WitnessWrite};
use plonky2::plonk::circuit_builder::CircuitBuilder;
2025-01-10 11:29:03 +01:00
use plonky2::plonk::circuit_data::{CircuitConfig, CircuitData, CommonCircuitData, VerifierCircuitTarget};
use plonky2::plonk::config::{AlgebraicHasher, GenericConfig};
use plonky2::plonk::proof::{ProofWithPublicInputs, ProofWithPublicInputsTarget};
use plonky2::recursion::dummy_circuit::cyclic_base_proof;
use plonky2_poseidon2::poseidon2_hash::poseidon2::Poseidon2;
2025-01-10 11:29:03 +01:00
use crate::params::{F,D,C,Plonky2Proof,H};
use crate::recursion::circuits::inner_circuit::InnerCircuit;
use plonky2::gates::noop::NoopGate;
use plonky2::recursion::cyclic_recursion::check_cyclic_proof_verifier_data;
use crate::circuits::utils::select_hash;
2025-01-10 11:29:03 +01:00
use crate::Result;
/// cyclic circuit struct
/// contains necessary data
/// note: only keeps track of latest proof not all proofs.
pub struct CyclicCircuit<
I: InnerCircuit,
>{
pub layer: usize,
pub circ: I,
pub cyclic_target: Option<CyclicCircuitTargets<I>>,
pub cyclic_circuit_data: Option<CircuitData<F, C, D>>,
pub common_data: Option<CommonCircuitData<F, D>>,
pub latest_proof: Option<ProofWithPublicInputs<F, C, D>>,
}
/// targets need to be assigned for the cyclic circuit
#[derive(Clone)]
pub struct CyclicCircuitTargets<
I: InnerCircuit,
>{
pub inner_targets: I::Targets,
pub condition: BoolTarget,
pub inner_cyclic_proof_with_pis: ProofWithPublicInputsTarget<D>,
pub verifier_data: VerifierCircuitTarget,
}
impl<
I: InnerCircuit,
> CyclicCircuit<I> {
/// create a new cyclic circuit
pub fn new(circ: I) -> Self{
Self{
layer: 0,
circ,
cyclic_target: None,
cyclic_circuit_data: None,
common_data: None,
latest_proof: None,
}
}
/// builds the cyclic recursion circuit using any inner circuit I
/// returns the circuit data
pub fn build_circuit(
&mut self,
) -> Result<()>{
// if the circuit data is already build then no need to rebuild
if self.cyclic_circuit_data.is_some(){
return Ok(());
}
// builder with standard recursion config
let config = CircuitConfig::standard_recursion_config();
let mut builder = CircuitBuilder::<F, D>::new(config);
//build the inner circuit
let inner_t = self.circ.build(& mut builder)?;
// common data for recursion
2025-01-10 11:29:03 +01:00
let mut common_data = common_data_for_cyclic_recursion();
// the hash of the public input
let pub_input_hash = builder.add_virtual_hash_public_input();
// verifier data for inner proofs
let verifier_data_target = builder.add_verifier_data_public_inputs();
// common data should have same num of public input as inner proofs
common_data.num_public_inputs = builder.num_public_inputs();
// condition
let condition = builder.add_virtual_bool_target_safe();
// inner proof with public input
let inner_cyclic_proof_with_pis = builder.add_virtual_proof_with_pis(&common_data);
// get the hash of the pub input
let inner_cyclic_pis = &inner_cyclic_proof_with_pis.public_inputs;
let inner_pub_input_hash = HashOutTarget::try_from(&inner_cyclic_pis[0..4]).unwrap();
// now hash the current public input
let outer_pis = I::get_pub_input_targets(&inner_t)?;
let outer_pi_hash = builder.hash_n_to_hash_no_pad::<H>(outer_pis);
let zero_hash = HashOutTarget::from_vec([builder.zero(); 4].to_vec());
// if leaf pad with zeros
let inner_pi_hash_or_zero_hash = select_hash(&mut builder, condition, inner_pub_input_hash, zero_hash);
// hash current public input with previous hash
let mut hash_input = vec![];
hash_input.extend_from_slice(&outer_pi_hash.elements);
hash_input.extend_from_slice(&inner_pi_hash_or_zero_hash.elements);
let outer_pi_hash = builder.hash_n_to_hash_no_pad::<H>(hash_input);
// connect this up one to `pub_input_hash`
builder.connect_hashes(pub_input_hash,outer_pi_hash);
// connect entropy?
// verify proof in-circuit
builder.conditionally_verify_cyclic_proof_or_dummy::<C>(
condition,
&inner_cyclic_proof_with_pis,
&common_data,
)?;
// build the cyclic circuit
let cyclic_circuit_data = builder.build::<C>();
// assign targets
let cyc_t = CyclicCircuitTargets::<I>{
inner_targets: inner_t,
condition,
inner_cyclic_proof_with_pis,
verifier_data: verifier_data_target
};
// assign the data
self.cyclic_circuit_data = Some(cyclic_circuit_data);
self.common_data = Some(common_data);
self.cyclic_target = Some(cyc_t);
Ok(())
}
/// generates a proof with only one recursion layer
/// takes circuit input
pub fn prove_one_layer(
&mut self,
circ_input: &I::Input,
) -> Result<ProofWithPublicInputs<F, C, D>>{
if self.cyclic_circuit_data.is_none(){
panic!("circuit data not found") // TODO: replace with err
}
let circ_data = self.cyclic_circuit_data.as_ref().unwrap();
let cyc_targets = self.cyclic_target.as_ref().unwrap();
let common_data = self.common_data.as_ref().unwrap();
// assign targets
let mut pw = PartialWitness::new();
self.circ.assign_targets(&mut pw,&cyc_targets.inner_targets,&circ_input)?;
// if leaf add dummy proof
if(self.layer == 0) {
pw.set_bool_target(cyc_targets.condition, false)?;
pw.set_proof_with_pis_target::<C, D>(
&cyc_targets.inner_cyclic_proof_with_pis,
&cyclic_base_proof(
common_data,
&circ_data.verifier_only,
HashMap::new(),
),
)?;
}else{ // else add last proof
pw.set_bool_target(cyc_targets.condition, true)?;
let last_proof = self.latest_proof.as_ref().unwrap();
pw.set_proof_with_pis_target(&cyc_targets.inner_cyclic_proof_with_pis, last_proof)?;
}
// assign verifier data
pw.set_verifier_data_target(&cyc_targets.verifier_data, &circ_data.verifier_only)?;
// prove
let proof = circ_data.prove(pw)?;
// check that the correct verifier data is consistent
check_cyclic_proof_verifier_data(
&proof,
&circ_data.verifier_only,
&circ_data.common,
)?;
self.latest_proof = Some(proof.clone());
self.layer = self.layer + 1;
Ok(proof)
}
/// prove n recursive layers
/// the function takes
/// - n: the number of layers and
/// - circ_input: vector of n inputs
pub fn prove_n_layers(
&mut self,
n: usize,
circ_input: Vec<I::Input>,
) -> Result<ProofWithPublicInputs<F, C, D>>{
// asserts that n equals the number of input
2025-01-10 11:29:03 +01:00
assert_eq!(n, circ_input.len()); // TODO: replace with err
for i in 0..n {
self.prove_one_layer(&circ_input[i])?;
}
Ok(self.latest_proof.clone().unwrap())
}
/// verifies the latest proof generated
pub fn verify_latest_proof(
&mut self,
) -> Result<()>{
if(self.cyclic_circuit_data.is_none() || self.latest_proof.is_none()){
2025-01-10 11:29:03 +01:00
panic!("no circuit data or proof found"); // TODO: replace with err
}
let circ_data = self.cyclic_circuit_data.as_ref().unwrap();
let proof = self.latest_proof.clone().unwrap();
circ_data.verify(proof)?;
Ok(())
}
}
/// Generates `CommonCircuitData` usable for recursion.
2025-01-10 11:29:03 +01:00
pub fn common_data_for_cyclic_recursion() -> CommonCircuitData<F, D>
{
// layer 1
let config = CircuitConfig::standard_recursion_config();
let builder = CircuitBuilder::<F, D>::new(config);
let data = builder.build::<C>();
// layer 2
let config = CircuitConfig::standard_recursion_config();
let mut builder = CircuitBuilder::<F, D>::new(config);
let proof = builder.add_virtual_proof_with_pis(&data.common);
let verifier_data =
builder.add_virtual_verifier_data(data.common.config.fri_config.cap_height);
builder.verify_proof::<C>(&proof, &verifier_data, &data.common);
let data = builder.build::<C>();
// layer 3
let config = CircuitConfig::standard_recursion_config();
let mut builder = CircuitBuilder::<F, D>::new(config);
let proof = builder.add_virtual_proof_with_pis(&data.common);
let verifier_data =
builder.add_virtual_verifier_data(data.common.config.fri_config.cap_height);
builder.verify_proof::<C>(&proof, &verifier_data, &data.common);
// pad with noop gates
while builder.num_gates() < 1 << 12 {
builder.add_gate(NoopGate, vec![]);
}
builder.build::<C>().common
}