2023-12-20 14:29:04 +01:00

395 lines
15 KiB
Rust

use std::collections::HashMap;
use std::sync::atomic::AtomicBool;
use std::sync::Arc;
use anyhow::anyhow;
use eth_trie_utils::partial_trie::{HashedPartialTrie, PartialTrie};
use ethereum_types::{Address, BigEndianHash, H256, U256};
use itertools::enumerate;
use plonky2::field::extension::Extendable;
use plonky2::field::polynomial::PolynomialValues;
use plonky2::field::types::Field;
use plonky2::hash::hash_types::RichField;
use plonky2::timed;
use plonky2::util::timing::TimingTree;
use serde::{Deserialize, Serialize};
use GlobalMetadata::{
ReceiptTrieRootDigestAfter, ReceiptTrieRootDigestBefore, StateTrieRootDigestAfter,
StateTrieRootDigestBefore, TransactionTrieRootDigestAfter, TransactionTrieRootDigestBefore,
};
use crate::all_stark::{AllStark, NUM_TABLES};
use crate::config::StarkConfig;
use crate::cpu::columns::CpuColumnsView;
use crate::cpu::kernel::aggregator::KERNEL;
use crate::cpu::kernel::assembler::Kernel;
use crate::cpu::kernel::constants::global_metadata::GlobalMetadata;
use crate::cpu::kernel::opcodes::get_opcode;
use crate::generation::state::GenerationState;
use crate::generation::trie_extractor::{get_receipt_trie, get_state_trie, get_txn_trie};
use crate::memory::segments::Segment;
use crate::proof::{BlockHashes, BlockMetadata, ExtraBlockData, PublicValues, TrieRoots};
use crate::prover::check_abort_signal;
use crate::util::{h2u, u256_to_u8, u256_to_usize};
use crate::witness::memory::{MemoryAddress, MemoryChannel};
use crate::witness::transition::transition;
pub mod mpt;
pub(crate) mod prover_input;
pub(crate) mod rlp;
pub(crate) mod state;
mod trie_extractor;
use self::mpt::{load_all_mpts, TrieRootPtrs};
use crate::witness::util::{mem_write_log, stack_peek};
/// Inputs needed for trace generation.
#[derive(Clone, Debug, Deserialize, Serialize, Default)]
pub struct GenerationInputs {
pub txn_number_before: U256,
pub gas_used_before: U256,
pub gas_used_after: U256,
// A None would yield an empty proof, otherwise this contains the encoding of a transaction.
pub signed_txn: Option<Vec<u8>>,
// Withdrawal pairs `(addr, amount)`. At the end of the txs, `amount` is added to `addr`'s balance. See EIP-4895.
pub withdrawals: Vec<(Address, U256)>,
pub tries: TrieInputs,
/// Expected trie roots after the transactions are executed.
pub trie_roots_after: TrieRoots,
/// State trie root of the checkpoint block.
/// This could always be the genesis block of the chain, but it allows a prover to continue proving blocks
/// from certain checkpoint heights without requiring proofs for blocks past this checkpoint.
pub checkpoint_state_trie_root: H256,
/// Mapping between smart contract code hashes and the contract byte code.
/// All account smart contracts that are invoked will have an entry present.
pub contract_code: HashMap<H256, Vec<u8>>,
pub block_metadata: BlockMetadata,
pub block_hashes: BlockHashes,
}
#[derive(Clone, Debug, Deserialize, Serialize, Default)]
pub struct TrieInputs {
/// A partial version of the state trie prior to these transactions. It should include all nodes
/// that will be accessed by these transactions.
pub state_trie: HashedPartialTrie,
/// A partial version of the transaction trie prior to these transactions. It should include all
/// nodes that will be accessed by these transactions.
pub transactions_trie: HashedPartialTrie,
/// A partial version of the receipt trie prior to these transactions. It should include all nodes
/// that will be accessed by these transactions.
pub receipts_trie: HashedPartialTrie,
/// A partial version of each storage trie prior to these transactions. It should include all
/// storage tries, and nodes therein, that will be accessed by these transactions.
pub storage_tries: Vec<(H256, HashedPartialTrie)>,
}
fn apply_metadata_and_tries_memops<F: RichField + Extendable<D>, const D: usize>(
state: &mut GenerationState<F>,
inputs: &GenerationInputs,
) {
let metadata = &inputs.block_metadata;
let tries = &inputs.tries;
let trie_roots_after = &inputs.trie_roots_after;
let fields = [
(
GlobalMetadata::BlockBeneficiary,
U256::from_big_endian(&metadata.block_beneficiary.0),
),
(GlobalMetadata::BlockTimestamp, metadata.block_timestamp),
(GlobalMetadata::BlockNumber, metadata.block_number),
(GlobalMetadata::BlockDifficulty, metadata.block_difficulty),
(
GlobalMetadata::BlockRandom,
metadata.block_random.into_uint(),
),
(GlobalMetadata::BlockGasLimit, metadata.block_gaslimit),
(GlobalMetadata::BlockChainId, metadata.block_chain_id),
(GlobalMetadata::BlockBaseFee, metadata.block_base_fee),
(
GlobalMetadata::BlockCurrentHash,
h2u(inputs.block_hashes.cur_hash),
),
(GlobalMetadata::BlockGasUsed, metadata.block_gas_used),
(GlobalMetadata::BlockGasUsedBefore, inputs.gas_used_before),
(GlobalMetadata::BlockGasUsedAfter, inputs.gas_used_after),
(GlobalMetadata::TxnNumberBefore, inputs.txn_number_before),
(
GlobalMetadata::TxnNumberAfter,
inputs.txn_number_before + if inputs.signed_txn.is_some() { 1 } else { 0 },
),
(
GlobalMetadata::StateTrieRootDigestBefore,
h2u(tries.state_trie.hash()),
),
(
GlobalMetadata::TransactionTrieRootDigestBefore,
h2u(tries.transactions_trie.hash()),
),
(
GlobalMetadata::ReceiptTrieRootDigestBefore,
h2u(tries.receipts_trie.hash()),
),
(
GlobalMetadata::StateTrieRootDigestAfter,
h2u(trie_roots_after.state_root),
),
(
GlobalMetadata::TransactionTrieRootDigestAfter,
h2u(trie_roots_after.transactions_root),
),
(
GlobalMetadata::ReceiptTrieRootDigestAfter,
h2u(trie_roots_after.receipts_root),
),
(GlobalMetadata::KernelHash, h2u(KERNEL.code_hash)),
(GlobalMetadata::KernelLen, KERNEL.code.len().into()),
];
let channel = MemoryChannel::GeneralPurpose(0);
let mut ops = fields
.map(|(field, val)| {
mem_write_log(
channel,
MemoryAddress::new(0, Segment::GlobalMetadata, field as usize),
state,
val,
)
})
.to_vec();
// Write the block's final block bloom filter.
ops.extend((0..8).map(|i| {
mem_write_log(
channel,
MemoryAddress::new(0, Segment::GlobalBlockBloom, i),
state,
metadata.block_bloom[i],
)
}));
// Write previous block hashes.
ops.extend(
(0..256)
.map(|i| {
mem_write_log(
channel,
MemoryAddress::new(0, Segment::BlockHashes, i),
state,
h2u(inputs.block_hashes.prev_hashes[i]),
)
})
.collect::<Vec<_>>(),
);
state.memory.apply_ops(&ops);
state.traces.memory_ops.extend(ops);
}
pub fn generate_traces<F: RichField + Extendable<D>, const D: usize>(
all_stark: &AllStark<F, D>,
inputs: GenerationInputs,
config: &StarkConfig,
timing: &mut TimingTree,
) -> anyhow::Result<([Vec<PolynomialValues<F>>; NUM_TABLES], PublicValues)> {
let mut state = GenerationState::<F>::new(inputs.clone(), &KERNEL.code)
.map_err(|err| anyhow!("Failed to parse all the initial prover inputs: {:?}", err))?;
apply_metadata_and_tries_memops(&mut state, &inputs);
let cpu_res = timed!(timing, "simulate CPU", simulate_cpu(&mut state));
if cpu_res.is_err() {
// Retrieve previous PC (before jumping to KernelPanic), to see if we reached `hash_final_tries`.
// We will output debugging information on the final tries only if we got a root mismatch.
let previous_pc = state
.traces
.cpu
.last()
.expect("We should have CPU rows")
.program_counter
.to_canonical_u64() as usize;
if KERNEL.offset_name(previous_pc).contains("hash_final_tries") {
let state_trie_ptr = u256_to_usize(
state
.memory
.read_global_metadata(GlobalMetadata::StateTrieRoot),
)
.map_err(|_| anyhow!("State trie pointer is too large to fit in a usize."))?;
log::debug!(
"Computed state trie: {:?}",
get_state_trie::<HashedPartialTrie>(&state.memory, state_trie_ptr)
);
let txn_trie_ptr = u256_to_usize(
state
.memory
.read_global_metadata(GlobalMetadata::TransactionTrieRoot),
)
.map_err(|_| anyhow!("Transactions trie pointer is too large to fit in a usize."))?;
log::debug!(
"Computed transactions trie: {:?}",
get_txn_trie::<HashedPartialTrie>(&state.memory, txn_trie_ptr)
);
let receipt_trie_ptr = u256_to_usize(
state
.memory
.read_global_metadata(GlobalMetadata::ReceiptTrieRoot),
)
.map_err(|_| anyhow!("Receipts trie pointer is too large to fit in a usize."))?;
log::debug!(
"Computed receipts trie: {:?}",
get_receipt_trie::<HashedPartialTrie>(&state.memory, receipt_trie_ptr)
);
}
cpu_res?;
}
log::info!(
"Trace lengths (before padding): {:?}",
state.traces.get_lengths()
);
let read_metadata = |field| state.memory.read_global_metadata(field);
let trie_roots_before = TrieRoots {
state_root: H256::from_uint(&read_metadata(StateTrieRootDigestBefore)),
transactions_root: H256::from_uint(&read_metadata(TransactionTrieRootDigestBefore)),
receipts_root: H256::from_uint(&read_metadata(ReceiptTrieRootDigestBefore)),
};
let trie_roots_after = TrieRoots {
state_root: H256::from_uint(&read_metadata(StateTrieRootDigestAfter)),
transactions_root: H256::from_uint(&read_metadata(TransactionTrieRootDigestAfter)),
receipts_root: H256::from_uint(&read_metadata(ReceiptTrieRootDigestAfter)),
};
let gas_used_after = read_metadata(GlobalMetadata::BlockGasUsedAfter);
let txn_number_after = read_metadata(GlobalMetadata::TxnNumberAfter);
let trie_root_ptrs = state.trie_root_ptrs;
let extra_block_data = ExtraBlockData {
checkpoint_state_trie_root: inputs.checkpoint_state_trie_root,
txn_number_before: inputs.txn_number_before,
txn_number_after,
gas_used_before: inputs.gas_used_before,
gas_used_after,
};
let public_values = PublicValues {
trie_roots_before,
trie_roots_after,
block_metadata: inputs.block_metadata,
block_hashes: inputs.block_hashes,
extra_block_data,
};
let tables = timed!(
timing,
"convert trace data to tables",
state.traces.into_tables(all_stark, config, timing)
);
Ok((tables, public_values))
}
fn simulate_cpu<F: Field>(state: &mut GenerationState<F>) -> anyhow::Result<()> {
let halt_pc = KERNEL.global_labels["halt"];
loop {
// If we've reached the kernel's halt routine, and our trace length is a power of 2, stop.
let pc = state.registers.program_counter;
let halt = state.registers.is_kernel && pc == halt_pc;
if halt {
log::info!("CPU halted after {} cycles", state.traces.clock());
// Padding
let mut row = CpuColumnsView::<F>::default();
row.clock = F::from_canonical_usize(state.traces.clock());
row.context = F::from_canonical_usize(state.registers.context);
row.program_counter = F::from_canonical_usize(pc);
row.is_kernel_mode = F::ONE;
row.gas = F::from_canonical_u64(state.registers.gas_used);
row.stack_len = F::from_canonical_usize(state.registers.stack_len);
loop {
state.traces.push_cpu(row);
row.clock += F::ONE;
if state.traces.clock().is_power_of_two() {
break;
}
}
log::info!("CPU trace padded to {} cycles", state.traces.clock());
return Ok(());
}
transition(state)?;
}
}
fn simulate_cpu_between_labels_and_get_user_jumps<F: Field>(
initial_label: &str,
final_label: &str,
state: &mut GenerationState<F>,
) -> anyhow::Result<Vec<usize>> {
let halt_pc = KERNEL.global_labels[final_label];
let mut jumpdest_addresses = HashSet::new();
state.registers.program_counter = KERNEL.global_labels[initial_label];
let context = state.registers.context;
log::debug!("Simulating CPU for jumpdest analysis ");
loop {
if state.registers.program_counter == KERNEL.global_labels["validate_jumpdest_table"] {
state.registers.program_counter = KERNEL.global_labels["validate_jumpdest_table_end"]
}
let pc = state.registers.program_counter;
let halt = state.registers.is_kernel && pc == halt_pc && state.registers.context == context;
let opcode = u256_to_u8(state.memory.get(MemoryAddress {
context: state.registers.context,
segment: Segment::Code as usize,
virt: state.registers.program_counter,
}))
.map_err(|_| anyhow::Error::msg("Invalid opcode."))?;
let cond = if let Ok(cond) = stack_peek(state, 1) {
cond != U256::zero()
} else {
false
};
if !state.registers.is_kernel
&& (opcode == get_opcode("JUMP") || (opcode == get_opcode("JUMPI") && cond))
{
// TODO: hotfix for avoiding deeper calls to abort
let jumpdest = u256_to_usize(state.registers.stack_top)
.map_err(|_| anyhow::Error::msg("Not a valid jump destination"))?;
state.memory.set(
MemoryAddress {
context: state.registers.context,
segment: Segment::JumpdestBits as usize,
virt: jumpdest,
},
U256::one(),
);
if (state.registers.context == context) {
jumpdest_addresses.insert(jumpdest);
}
}
if halt {
log::debug!("Simulated CPU halted after {} cycles", state.traces.clock());
let mut jumpdest_addresses: Vec<usize> = jumpdest_addresses.into_iter().collect();
jumpdest_addresses.sort();
return Ok(jumpdest_addresses);
}
transition(state)?;
}
}