plonky2/evm/src/cpu/kernel/interpreter.rs
2023-12-20 14:29:04 +01:00

1546 lines
54 KiB
Rust

//! An EVM interpreter for testing and debugging purposes.
use core::cmp::Ordering;
use std::collections::HashMap;
use std::ops::Range;
use anyhow::bail;
use ethereum_types::{U256, U512};
use keccak_hash::keccak;
use plonky2::field::goldilocks_field::GoldilocksField;
use super::assembler::BYTES_PER_OFFSET;
use super::utils::u256_from_bool;
use crate::cpu::kernel::aggregator::KERNEL;
use crate::cpu::kernel::constants::context_metadata::ContextMetadata;
use crate::cpu::kernel::constants::global_metadata::GlobalMetadata;
use crate::cpu::kernel::constants::txn_fields::NormalizedTxnField;
use crate::cpu::stack::MAX_USER_STACK_SIZE;
use crate::extension_tower::BN_BASE;
use crate::generation::prover_input::ProverInputFn;
use crate::generation::state::GenerationState;
use crate::generation::GenerationInputs;
use crate::memory::segments::Segment;
use crate::util::u256_to_usize;
use crate::witness::errors::{ProgramError, ProverInputError};
use crate::witness::gas::gas_to_charge;
use crate::witness::memory::{MemoryAddress, MemoryContextState, MemorySegmentState, MemoryState};
use crate::witness::operation::Operation;
use crate::witness::state::RegistersState;
use crate::witness::transition::decode;
use crate::witness::util::stack_peek;
type F = GoldilocksField;
/// Halt interpreter execution whenever a jump to this offset is done.
const DEFAULT_HALT_OFFSET: usize = 0xdeadbeef;
impl MemoryState {
pub(crate) fn mload_general(&self, context: usize, segment: Segment, offset: usize) -> U256 {
self.get(MemoryAddress::new(context, segment, offset))
}
fn mstore_general(
&mut self,
context: usize,
segment: Segment,
offset: usize,
value: U256,
) -> InterpreterMemOpKind {
let old_value = self.mload_general(context, segment, offset);
self.set(MemoryAddress::new(context, segment, offset), value);
InterpreterMemOpKind::Write(old_value, context, segment as usize, offset)
}
}
pub(crate) struct Interpreter<'a> {
jumpdests: Vec<usize>,
pub(crate) generation_state: GenerationState<F>,
prover_inputs_map: &'a HashMap<usize, ProverInputFn>,
pub(crate) halt_offsets: Vec<usize>,
pub(crate) debug_offsets: Vec<usize>,
running: bool,
opcode_count: [usize; 0x100],
memops: Vec<InterpreterMemOpKind>,
}
/// Structure storing the state of the interpreter's registers.
struct InterpreterRegistersState {
kernel_mode: bool,
context: usize,
registers: RegistersState,
}
/// Interpreter state at the last checkpoint: we only need to store
/// the state of the registers and the length of the vector of memory operations.
/// This data is enough to revert in case of an exception.
struct InterpreterCheckpoint {
registers: InterpreterRegistersState,
mem_len: usize,
}
pub(crate) fn run_interpreter(
initial_offset: usize,
initial_stack: Vec<U256>,
) -> anyhow::Result<Interpreter<'static>> {
run(
&KERNEL.code,
initial_offset,
initial_stack,
&KERNEL.prover_inputs,
)
}
#[derive(Clone)]
pub(crate) struct InterpreterMemoryInitialization {
pub label: String,
pub stack: Vec<U256>,
pub segment: Segment,
pub memory: Vec<(usize, Vec<U256>)>,
}
pub(crate) fn run_interpreter_with_memory(
memory_init: InterpreterMemoryInitialization,
) -> anyhow::Result<Interpreter<'static>> {
let label = KERNEL.global_labels[&memory_init.label];
let mut stack = memory_init.stack;
stack.reverse();
let mut interpreter = Interpreter::new_with_kernel(label, stack);
for (pointer, data) in memory_init.memory {
for (i, term) in data.iter().enumerate() {
interpreter.generation_state.memory.set(
MemoryAddress::new(0, memory_init.segment, pointer + i),
*term,
)
}
}
interpreter.run()?;
Ok(interpreter)
}
pub(crate) fn run<'a>(
code: &'a [u8],
initial_offset: usize,
initial_stack: Vec<U256>,
prover_inputs: &'a HashMap<usize, ProverInputFn>,
) -> anyhow::Result<Interpreter<'a>> {
let mut interpreter = Interpreter::new(code, initial_offset, initial_stack, prover_inputs);
interpreter.run()?;
Ok(interpreter)
}
/// Different types of Memory operations in the interpreter, and the data required to revert them.
enum InterpreterMemOpKind {
/// We need to provide the context.
Push(usize),
/// If we pop a certain value, we need to push it back to the correct context when reverting.
Pop(U256, usize),
/// If we write a value at a certain address, we need to write the old value back when reverting.
Write(U256, usize, usize, usize),
}
impl<'a> Interpreter<'a> {
pub(crate) fn new_with_kernel(initial_offset: usize, initial_stack: Vec<U256>) -> Self {
Self::new(
&KERNEL.code,
initial_offset,
initial_stack,
&KERNEL.prover_inputs,
)
}
pub(crate) fn new(
code: &'a [u8],
initial_offset: usize,
initial_stack: Vec<U256>,
prover_inputs: &'a HashMap<usize, ProverInputFn>,
) -> Self {
let mut result = Self {
jumpdests: find_jumpdests(code),
generation_state: GenerationState::new(GenerationInputs::default(), code)
.expect("Default inputs are known-good"),
prover_inputs_map: prover_inputs,
// `DEFAULT_HALT_OFFSET` is used as a halting point for the interpreter,
// while the label `halt` is the halting label in the kernel.
halt_offsets: vec![DEFAULT_HALT_OFFSET, KERNEL.global_labels["halt"]],
debug_offsets: vec![],
running: false,
opcode_count: [0; 256],
memops: vec![],
};
result.generation_state.registers.program_counter = initial_offset;
let initial_stack_len = initial_stack.len();
result.generation_state.registers.stack_len = initial_stack_len;
if !initial_stack.is_empty() {
result.generation_state.registers.stack_top = initial_stack[initial_stack_len - 1];
*result.stack_segment_mut() = initial_stack;
result.stack_segment_mut().truncate(initial_stack_len - 1);
}
result
}
fn checkpoint(&self) -> InterpreterCheckpoint {
let registers = InterpreterRegistersState {
kernel_mode: self.is_kernel(),
context: self.context(),
registers: self.generation_state.registers,
};
InterpreterCheckpoint {
registers,
mem_len: self.memops.len(),
}
}
fn roll_memory_back(&mut self, len: usize) {
// We roll the memory back until `memops` reaches length `len`.
debug_assert!(self.memops.len() >= len);
while self.memops.len() > len {
if let Some(op) = self.memops.pop() {
match op {
InterpreterMemOpKind::Push(context) => {
self.generation_state.memory.contexts[context].segments
[Segment::Stack as usize]
.content
.pop();
}
InterpreterMemOpKind::Pop(value, context) => {
self.generation_state.memory.contexts[context].segments
[Segment::Stack as usize]
.content
.push(value)
}
InterpreterMemOpKind::Write(value, context, segment, offset) => {
self.generation_state.memory.contexts[context].segments[segment].content
[offset] = value
}
}
}
}
}
fn rollback(&mut self, checkpoint: InterpreterCheckpoint) {
let InterpreterRegistersState {
kernel_mode,
context,
registers,
} = checkpoint.registers;
self.set_is_kernel(kernel_mode);
self.set_context(context);
self.generation_state.registers = registers;
self.roll_memory_back(checkpoint.mem_len);
}
fn handle_error(&mut self, err: ProgramError) -> anyhow::Result<()> {
let exc_code: u8 = match err {
ProgramError::OutOfGas => 0,
ProgramError::InvalidOpcode => 1,
ProgramError::StackUnderflow => 2,
ProgramError::InvalidJumpDestination => 3,
ProgramError::InvalidJumpiDestination => 4,
ProgramError::StackOverflow => 5,
_ => bail!("TODO: figure out what to do with this..."),
};
self.run_exception(exc_code)
.map_err(|_| anyhow::Error::msg("error handling errored..."))
}
pub(crate) fn run(&mut self) -> anyhow::Result<()> {
self.running = true;
while self.running {
let pc = self.generation_state.registers.program_counter;
if self.is_kernel() && self.halt_offsets.contains(&pc) {
return Ok(());
};
let checkpoint = self.checkpoint();
let result = self.run_opcode();
match result {
Ok(()) => Ok(()),
Err(e) => {
if self.is_kernel() {
let offset_name =
KERNEL.offset_name(self.generation_state.registers.program_counter);
bail!(
"{:?} in kernel at pc={}, stack={:?}, memory={:?}",
e,
offset_name,
self.stack(),
self.generation_state.memory.contexts[0].segments
[Segment::KernelGeneral as usize]
.content,
);
}
self.rollback(checkpoint);
self.handle_error(e)
}
}?;
}
println!("Opcode count:");
for i in 0..0x100 {
if self.opcode_count[i] > 0 {
println!("{}: {}", get_mnemonic(i as u8), self.opcode_count[i])
}
}
println!("Total: {}", self.opcode_count.into_iter().sum::<usize>());
Ok(())
}
fn code(&self) -> &MemorySegmentState {
// The context is 0 if we are in kernel mode.
&self.generation_state.memory.contexts[(1 - self.is_kernel() as usize) * self.context()]
.segments[Segment::Code as usize]
}
fn code_slice(&self, n: usize) -> Vec<u8> {
let pc = self.generation_state.registers.program_counter;
self.code().content[pc..pc + n]
.iter()
.map(|u256| u256.byte(0))
.collect::<Vec<_>>()
}
pub(crate) fn get_txn_field(&self, field: NormalizedTxnField) -> U256 {
self.generation_state.memory.contexts[0].segments[Segment::TxnFields as usize]
.get(field as usize)
}
pub(crate) fn set_txn_field(&mut self, field: NormalizedTxnField, value: U256) {
self.generation_state.memory.contexts[0].segments[Segment::TxnFields as usize]
.set(field as usize, value);
}
pub(crate) fn get_txn_data(&self) -> &[U256] {
&self.generation_state.memory.contexts[0].segments[Segment::TxnData as usize].content
}
pub(crate) fn get_global_metadata_field(&self, field: GlobalMetadata) -> U256 {
self.generation_state.memory.contexts[0].segments[Segment::GlobalMetadata as usize]
.get(field as usize)
}
pub(crate) fn set_global_metadata_field(&mut self, field: GlobalMetadata, value: U256) {
self.generation_state.memory.contexts[0].segments[Segment::GlobalMetadata as usize]
.set(field as usize, value)
}
pub(crate) fn set_global_metadata_multi_fields(&mut self, metadata: &[(GlobalMetadata, U256)]) {
for &(field, value) in metadata {
self.generation_state.memory.contexts[0].segments[Segment::GlobalMetadata as usize]
.set(field as usize, value);
}
}
pub(crate) fn get_trie_data(&self) -> &[U256] {
&self.generation_state.memory.contexts[0].segments[Segment::TrieData as usize].content
}
pub(crate) fn get_trie_data_mut(&mut self) -> &mut Vec<U256> {
&mut self.generation_state.memory.contexts[0].segments[Segment::TrieData as usize].content
}
pub(crate) fn get_memory_segment(&self, segment: Segment) -> Vec<U256> {
self.generation_state.memory.contexts[0].segments[segment as usize]
.content
.clone()
}
pub(crate) fn get_memory_segment_bytes(&self, segment: Segment) -> Vec<u8> {
self.generation_state.memory.contexts[0].segments[segment as usize]
.content
.iter()
.map(|x| x.low_u32() as u8)
.collect()
}
pub(crate) fn get_current_general_memory(&self) -> Vec<U256> {
self.generation_state.memory.contexts[self.context()].segments
[Segment::KernelGeneral as usize]
.content
.clone()
}
pub(crate) fn get_kernel_general_memory(&self) -> Vec<U256> {
self.get_memory_segment(Segment::KernelGeneral)
}
pub(crate) fn get_rlp_memory(&self) -> Vec<u8> {
self.get_memory_segment_bytes(Segment::RlpRaw)
}
pub(crate) fn set_current_general_memory(&mut self, memory: Vec<U256>) {
let context = self.context();
self.generation_state.memory.contexts[context].segments[Segment::KernelGeneral as usize]
.content = memory;
}
pub(crate) fn set_memory_segment(&mut self, segment: Segment, memory: Vec<U256>) {
self.generation_state.memory.contexts[0].segments[segment as usize].content = memory;
}
pub(crate) fn set_memory_segment_bytes(&mut self, segment: Segment, memory: Vec<u8>) {
self.generation_state.memory.contexts[0].segments[segment as usize].content =
memory.into_iter().map(U256::from).collect();
}
pub(crate) fn set_rlp_memory(&mut self, rlp: Vec<u8>) {
self.set_memory_segment_bytes(Segment::RlpRaw, rlp)
}
pub(crate) fn set_code(&mut self, context: usize, code: Vec<u8>) {
assert_ne!(context, 0, "Can't modify kernel code.");
while self.generation_state.memory.contexts.len() <= context {
self.generation_state
.memory
.contexts
.push(MemoryContextState::default());
}
self.generation_state.memory.contexts[context].segments[Segment::Code as usize].content =
code.into_iter().map(U256::from).collect();
}
pub(crate) fn set_memory_multi_addresses(&mut self, addrs: &[(MemoryAddress, U256)]) {
for &(addr, val) in addrs {
self.generation_state.memory.set(addr, val);
}
}
pub(crate) fn get_jumpdest_bits(&self, context: usize) -> Vec<bool> {
self.generation_state.memory.contexts[context].segments[Segment::JumpdestBits as usize]
.content
.iter()
.map(|x| x.bit(0))
.collect()
}
pub(crate) fn set_jumpdest_bits(&mut self, context: usize, jumpdest_bits: Vec<bool>) {
self.generation_state.memory.contexts[context].segments[Segment::JumpdestBits as usize]
.content = jumpdest_bits
.into_iter()
.map(|x| u256_from_bool(x))
.collect();
}
fn incr(&mut self, n: usize) {
self.generation_state.registers.program_counter += n;
}
pub(crate) fn stack(&self) -> Vec<U256> {
match self.stack_len().cmp(&1) {
Ordering::Greater => {
let mut stack = self.generation_state.memory.contexts[self.context()].segments
[Segment::Stack as usize]
.content
.clone();
stack.truncate(self.stack_len() - 1);
stack.push(
self.stack_top()
.expect("The stack is checked to be nonempty"),
);
stack
}
Ordering::Equal => {
vec![self
.stack_top()
.expect("The stack is checked to be nonempty")]
}
Ordering::Less => {
vec![]
}
}
}
fn stack_segment_mut(&mut self) -> &mut Vec<U256> {
let context = self.context();
&mut self.generation_state.memory.contexts[context].segments[Segment::Stack as usize]
.content
}
pub(crate) fn extract_kernel_memory(self, segment: Segment, range: Range<usize>) -> Vec<U256> {
let mut output: Vec<U256> = vec![];
for i in range {
let term = self
.generation_state
.memory
.get(MemoryAddress::new(0, segment, i));
output.push(term);
}
output
}
pub(crate) fn push(&mut self, x: U256) -> Result<(), ProgramError> {
if !self.is_kernel() && self.stack_len() >= MAX_USER_STACK_SIZE {
return Err(ProgramError::StackOverflow);
}
if self.stack_len() > 0 {
let top = self
.stack_top()
.expect("The stack is checked to be nonempty");
let cur_len = self.stack_len();
let stack_addr = MemoryAddress::new(self.context(), Segment::Stack, cur_len - 1);
self.generation_state.memory.set(stack_addr, top);
}
self.generation_state.registers.stack_top = x;
self.generation_state.registers.stack_len += 1;
self.memops.push(InterpreterMemOpKind::Push(self.context()));
Ok(())
}
fn push_bool(&mut self, x: bool) -> Result<(), ProgramError> {
self.push(if x { U256::one() } else { U256::zero() })
}
pub(crate) fn pop(&mut self) -> Result<U256, ProgramError> {
let result = stack_peek(&self.generation_state, 0);
if let Ok(val) = result {
self.memops
.push(InterpreterMemOpKind::Pop(val, self.context()));
}
if self.stack_len() > 1 {
let top = stack_peek(&self.generation_state, 1).unwrap();
self.generation_state.registers.stack_top = top;
}
self.generation_state.registers.stack_len -= 1;
result
}
fn run_opcode(&mut self) -> Result<(), ProgramError> {
let opcode = self
.code()
.get(self.generation_state.registers.program_counter)
.byte(0);
self.opcode_count[opcode as usize] += 1;
self.incr(1);
match opcode {
0x00 => self.run_syscall(opcode, 0, false), // "STOP",
0x01 => self.run_add(), // "ADD",
0x02 => self.run_mul(), // "MUL",
0x03 => self.run_sub(), // "SUB",
0x04 => self.run_div(), // "DIV",
0x05 => self.run_syscall(opcode, 2, false), // "SDIV",
0x06 => self.run_mod(), // "MOD",
0x07 => self.run_syscall(opcode, 2, false), // "SMOD",
0x08 => self.run_addmod(), // "ADDMOD",
0x09 => self.run_mulmod(), // "MULMOD",
0x0a => self.run_syscall(opcode, 2, false), // "EXP",
0x0b => self.run_syscall(opcode, 2, false), // "SIGNEXTEND",
0x0c => self.run_addfp254(), // "ADDFP254",
0x0d => self.run_mulfp254(), // "MULFP254",
0x0e => self.run_subfp254(), // "SUBFP254",
0x0f => self.run_submod(), // "SUBMOD",
0x10 => self.run_lt(), // "LT",
0x11 => self.run_gt(), // "GT",
0x12 => self.run_syscall(opcode, 2, false), // "SLT",
0x13 => self.run_syscall(opcode, 2, false), // "SGT",
0x14 => self.run_eq(), // "EQ",
0x15 => self.run_iszero(), // "ISZERO",
0x16 => self.run_and(), // "AND",
0x17 => self.run_or(), // "OR",
0x18 => self.run_xor(), // "XOR",
0x19 => self.run_not(), // "NOT",
0x1a => self.run_byte(), // "BYTE",
0x1b => self.run_shl(), // "SHL",
0x1c => self.run_shr(), // "SHR",
0x1d => self.run_syscall(opcode, 2, false), // "SAR",
0x20 => self.run_syscall(opcode, 2, false), // "KECCAK256",
0x21 => self.run_keccak_general(), // "KECCAK_GENERAL",
0x30 => self.run_syscall(opcode, 0, true), // "ADDRESS",
0x31 => self.run_syscall(opcode, 1, false), // "BALANCE",
0x32 => self.run_syscall(opcode, 0, true), // "ORIGIN",
0x33 => self.run_syscall(opcode, 0, true), // "CALLER",
0x34 => self.run_syscall(opcode, 0, true), // "CALLVALUE",
0x35 => self.run_syscall(opcode, 1, false), // "CALLDATALOAD",
0x36 => self.run_syscall(opcode, 0, true), // "CALLDATASIZE",
0x37 => self.run_syscall(opcode, 3, false), // "CALLDATACOPY",
0x38 => self.run_syscall(opcode, 0, true), // "CODESIZE",
0x39 => self.run_syscall(opcode, 3, false), // "CODECOPY",
0x3a => self.run_syscall(opcode, 0, true), // "GASPRICE",
0x3b => self.run_syscall(opcode, 1, false), // "EXTCODESIZE",
0x3c => self.run_syscall(opcode, 4, false), // "EXTCODECOPY",
0x3d => self.run_syscall(opcode, 0, true), // "RETURNDATASIZE",
0x3e => self.run_syscall(opcode, 3, false), // "RETURNDATACOPY",
0x3f => self.run_syscall(opcode, 1, false), // "EXTCODEHASH",
0x40 => self.run_syscall(opcode, 1, false), // "BLOCKHASH",
0x41 => self.run_syscall(opcode, 0, true), // "COINBASE",
0x42 => self.run_syscall(opcode, 0, true), // "TIMESTAMP",
0x43 => self.run_syscall(opcode, 0, true), // "NUMBER",
0x44 => self.run_syscall(opcode, 0, true), // "DIFFICULTY",
0x45 => self.run_syscall(opcode, 0, true), // "GASLIMIT",
0x46 => self.run_syscall(opcode, 0, true), // "CHAINID",
0x47 => self.run_syscall(opcode, 0, true), // SELFABALANCE,
0x48 => self.run_syscall(opcode, 0, true), // "BASEFEE",
0x49 => self.run_prover_input(), // "PROVER_INPUT",
0x50 => self.run_pop(), // "POP",
0x51 => self.run_syscall(opcode, 1, false), // "MLOAD",
0x52 => self.run_syscall(opcode, 2, false), // "MSTORE",
0x53 => self.run_syscall(opcode, 2, false), // "MSTORE8",
0x54 => self.run_syscall(opcode, 1, false), // "SLOAD",
0x55 => self.run_syscall(opcode, 2, false), // "SSTORE",
0x56 => self.run_jump(), // "JUMP",
0x57 => self.run_jumpi(), // "JUMPI",
0x58 => self.run_pc(), // "PC",
0x59 => self.run_syscall(opcode, 0, true), // "MSIZE",
0x5a => self.run_syscall(opcode, 0, true), // "GAS",
0x5b => self.run_jumpdest(), // "JUMPDEST",
x if (0x5f..0x80).contains(&x) => self.run_push(x - 0x5f), // "PUSH"
x if (0x80..0x90).contains(&x) => self.run_dup(x - 0x7f), // "DUP"
x if (0x90..0xa0).contains(&x) => self.run_swap(x - 0x8f), // "SWAP"
0xa0 => self.run_syscall(opcode, 2, false), // "LOG0",
0xa1 => self.run_syscall(opcode, 3, false), // "LOG1",
0xa2 => self.run_syscall(opcode, 4, false), // "LOG2",
0xa3 => self.run_syscall(opcode, 5, false), // "LOG3",
0xa4 => self.run_syscall(opcode, 6, false), // "LOG4",
0xa5 => {
log::warn!(
"Kernel panic at {}, stack = {:?}, memory = {:?}",
KERNEL.offset_name(self.generation_state.registers.program_counter),
self.stack(),
self.get_kernel_general_memory()
);
Err(ProgramError::KernelPanic)
} // "PANIC",
x if (0xc0..0xe0).contains(&x) => self.run_mstore_32bytes(x - 0xc0 + 1), // "MSTORE_32BYTES",
0xf0 => self.run_syscall(opcode, 3, false), // "CREATE",
0xf1 => self.run_syscall(opcode, 7, false), // "CALL",
0xf2 => self.run_syscall(opcode, 7, false), // "CALLCODE",
0xf3 => self.run_syscall(opcode, 2, false), // "RETURN",
0xf4 => self.run_syscall(opcode, 6, false), // "DELEGATECALL",
0xf5 => self.run_syscall(opcode, 4, false), // "CREATE2",
0xf6 => self.run_get_context(), // "GET_CONTEXT",
0xf7 => self.run_set_context(), // "SET_CONTEXT",
0xf8 => self.run_mload_32bytes(), // "MLOAD_32BYTES",
0xf9 => self.run_exit_kernel(), // "EXIT_KERNEL",
0xfa => self.run_syscall(opcode, 6, false), // "STATICCALL",
0xfb => self.run_mload_general(), // "MLOAD_GENERAL",
0xfc => self.run_mstore_general(), // "MSTORE_GENERAL",
0xfd => self.run_syscall(opcode, 2, false), // "REVERT",
0xfe => {
log::warn!(
"Invalid opcode at {}",
KERNEL.offset_name(self.generation_state.registers.program_counter),
);
Err(ProgramError::InvalidOpcode)
} // "INVALID",
0xff => self.run_syscall(opcode, 1, false), // "SELFDESTRUCT",
_ => {
log::warn!(
"Unrecognized opcode at {}",
KERNEL.offset_name(self.generation_state.registers.program_counter),
);
Err(ProgramError::InvalidOpcode)
}
}?;
if self
.debug_offsets
.contains(&self.generation_state.registers.program_counter)
{
println!("At {}, stack={:?}", self.offset_name(), self.stack());
} else if let Some(label) = self.offset_label() {
println!("At {label}");
}
let op = decode(self.generation_state.registers, opcode)
// We default to prover inputs, as those are kernel-only instructions that charge nothing.
.unwrap_or(Operation::ProverInput);
self.generation_state.registers.gas_used += gas_to_charge(op);
if !self.is_kernel() {
let gas_limit_address = MemoryAddress {
context: self.context(),
segment: Segment::ContextMetadata as usize,
virt: ContextMetadata::GasLimit as usize,
};
let gas_limit =
u256_to_usize(self.generation_state.memory.get(gas_limit_address))? as u64;
if self.generation_state.registers.gas_used > gas_limit {
return Err(ProgramError::OutOfGas);
}
}
Ok(())
}
fn offset_name(&self) -> String {
KERNEL.offset_name(self.generation_state.registers.program_counter)
}
fn offset_label(&self) -> Option<String> {
KERNEL.offset_label(self.generation_state.registers.program_counter)
}
fn run_add(&mut self) -> anyhow::Result<(), ProgramError> {
let x = self.pop()?;
let y = self.pop()?;
self.push(x.overflowing_add(y).0)
}
fn run_mul(&mut self) -> anyhow::Result<(), ProgramError> {
let x = self.pop()?;
let y = self.pop()?;
self.push(x.overflowing_mul(y).0)
}
fn run_sub(&mut self) -> anyhow::Result<(), ProgramError> {
let x = self.pop()?;
let y = self.pop()?;
self.push(x.overflowing_sub(y).0)
}
fn run_addfp254(&mut self) -> anyhow::Result<(), ProgramError> {
let x = self.pop()? % BN_BASE;
let y = self.pop()? % BN_BASE;
// BN_BASE is 254-bit so addition can't overflow
self.push((x + y) % BN_BASE)
}
fn run_mulfp254(&mut self) -> anyhow::Result<(), ProgramError> {
let x = self.pop()?;
let y = self.pop()?;
self.push(
U256::try_from(x.full_mul(y) % BN_BASE)
.expect("BN_BASE is 254 bit so the U512 fits in a U256"),
)
}
fn run_subfp254(&mut self) -> anyhow::Result<(), ProgramError> {
let x = self.pop()? % BN_BASE;
let y = self.pop()? % BN_BASE;
// BN_BASE is 254-bit so addition can't overflow
self.push((x + (BN_BASE - y)) % BN_BASE)
}
fn run_div(&mut self) -> anyhow::Result<(), ProgramError> {
let x = self.pop()?;
let y = self.pop()?;
self.push(if y.is_zero() { U256::zero() } else { x / y })
}
fn run_mod(&mut self) -> anyhow::Result<(), ProgramError> {
let x = self.pop()?;
let y = self.pop()?;
self.push(if y.is_zero() { U256::zero() } else { x % y })
}
fn run_addmod(&mut self) -> anyhow::Result<(), ProgramError> {
let x = self.pop()?;
let y = self.pop()?;
let z = self.pop()?;
self.push(if z.is_zero() {
z
} else {
let (x, y, z) = (U512::from(x), U512::from(y), U512::from(z));
U256::try_from((x + y) % z)
.expect("Inputs are U256 and their sum mod a U256 fits in a U256.")
})
}
fn run_submod(&mut self) -> anyhow::Result<(), ProgramError> {
let x = self.pop()?;
let y = self.pop()?;
let z = self.pop()?;
self.push(if z.is_zero() {
z
} else {
let (x, y, z) = (U512::from(x), U512::from(y), U512::from(z));
U256::try_from((z + x - y) % z)
.expect("Inputs are U256 and their difference mod a U256 fits in a U256.")
})
}
fn run_mulmod(&mut self) -> anyhow::Result<(), ProgramError> {
let x = self.pop()?;
let y = self.pop()?;
let z = self.pop()?;
self.push(if z.is_zero() {
z
} else {
U256::try_from(x.full_mul(y) % z)
.expect("Inputs are U256 and their product mod a U256 fits in a U256.")
})
}
fn run_lt(&mut self) -> anyhow::Result<(), ProgramError> {
let x = self.pop()?;
let y = self.pop()?;
self.push_bool(x < y)
}
fn run_gt(&mut self) -> anyhow::Result<(), ProgramError> {
let x = self.pop()?;
let y = self.pop()?;
self.push_bool(x > y)
}
fn run_eq(&mut self) -> anyhow::Result<(), ProgramError> {
let x = self.pop()?;
let y = self.pop()?;
self.push_bool(x == y)
}
fn run_iszero(&mut self) -> anyhow::Result<(), ProgramError> {
let x = self.pop()?;
self.push_bool(x.is_zero())
}
fn run_and(&mut self) -> anyhow::Result<(), ProgramError> {
let x = self.pop()?;
let y = self.pop()?;
self.push(x & y)
}
fn run_or(&mut self) -> anyhow::Result<(), ProgramError> {
let x = self.pop()?;
let y = self.pop()?;
self.push(x | y)
}
fn run_xor(&mut self) -> anyhow::Result<(), ProgramError> {
let x = self.pop()?;
let y = self.pop()?;
self.push(x ^ y)
}
fn run_not(&mut self) -> anyhow::Result<(), ProgramError> {
let x = self.pop()?;
self.push(!x)
}
fn run_byte(&mut self) -> anyhow::Result<(), ProgramError> {
let i = self.pop()?;
let x = self.pop()?;
let result = if i < 32.into() {
x.byte(31 - i.as_usize())
} else {
0
};
self.push(result.into())
}
fn run_shl(&mut self) -> anyhow::Result<(), ProgramError> {
let shift = self.pop()?;
let value = self.pop()?;
self.push(if shift < U256::from(256usize) {
value << shift
} else {
U256::zero()
})
}
fn run_shr(&mut self) -> anyhow::Result<(), ProgramError> {
let shift = self.pop()?;
let value = self.pop()?;
self.push(value >> shift)
}
fn run_keccak_general(&mut self) -> anyhow::Result<(), ProgramError> {
let context = self.pop()?.as_usize();
let segment = Segment::all()[self.pop()?.as_usize()];
// Not strictly needed but here to avoid surprises with MSIZE.
assert_ne!(segment, Segment::MainMemory, "Call KECCAK256 instead.");
let offset = self.pop()?.as_usize();
let size = self.pop()?.as_usize();
let bytes = (offset..offset + size)
.map(|i| {
self.generation_state
.memory
.mload_general(context, segment, i)
.byte(0)
})
.collect::<Vec<_>>();
println!("Hashing {:?}", &bytes);
let hash = keccak(bytes);
self.push(U256::from_big_endian(hash.as_bytes()))
}
fn run_prover_input(&mut self) -> Result<(), ProgramError> {
let prover_input_fn = self
.prover_inputs_map
.get(&(self.generation_state.registers.program_counter - 1))
.ok_or(ProgramError::ProverInputError(
ProverInputError::InvalidMptInput,
))?;
let output = self.generation_state.prover_input(prover_input_fn)?;
self.push(output)
}
fn run_pop(&mut self) -> anyhow::Result<(), ProgramError> {
self.pop().map(|_| ())
}
fn run_syscall(
&mut self,
opcode: u8,
stack_values_read: usize,
stack_len_increased: bool,
) -> Result<(), ProgramError> {
TryInto::<u64>::try_into(self.generation_state.registers.gas_used)
.map_err(|_| ProgramError::GasLimitError)?;
if self.generation_state.registers.stack_len < stack_values_read {
return Err(ProgramError::StackUnderflow);
}
if stack_len_increased
&& !self.is_kernel()
&& self.generation_state.registers.stack_len >= MAX_USER_STACK_SIZE
{
return Err(ProgramError::StackOverflow);
};
let handler_jumptable_addr = KERNEL.global_labels["syscall_jumptable"];
let handler_addr = {
let offset = handler_jumptable_addr + (opcode as usize) * (BYTES_PER_OFFSET as usize);
self.get_memory_segment(Segment::Code)[offset..offset + 3]
.iter()
.fold(U256::from(0), |acc, &elt| acc * (1 << 8) + elt)
};
let new_program_counter =
u256_to_usize(handler_addr).map_err(|_| ProgramError::IntegerTooLarge)?;
let syscall_info = U256::from(self.generation_state.registers.program_counter)
+ U256::from((self.is_kernel() as usize) << 32)
+ (U256::from(self.generation_state.registers.gas_used) << 192);
self.generation_state.registers.program_counter = new_program_counter;
self.set_is_kernel(true);
self.generation_state.registers.gas_used = 0;
self.push(syscall_info)
}
fn run_jump(&mut self) -> anyhow::Result<(), ProgramError> {
let x = self.pop()?;
// Check that the destination is valid.
let x: u32 = x
.try_into()
.map_err(|_| ProgramError::InvalidJumpDestination)?;
self.jump_to(x as usize)
}
fn run_jumpi(&mut self) -> anyhow::Result<(), ProgramError> {
let x = self.pop()?;
let b = self.pop()?;
if !b.is_zero() {
let x: u32 = x
.try_into()
.map_err(|_| ProgramError::InvalidJumpiDestination)?;
self.jump_to(x as usize)?;
}
Ok(())
}
fn run_pc(&mut self) -> anyhow::Result<(), ProgramError> {
self.push(
(self
.generation_state
.registers
.program_counter
.saturating_sub(1))
.into(),
)
}
fn run_jumpdest(&mut self) -> anyhow::Result<(), ProgramError> {
assert!(!self.is_kernel(), "JUMPDEST is not needed in kernel code");
Ok(())
}
fn jump_to(&mut self, offset: usize) -> anyhow::Result<(), ProgramError> {
// The JUMPDEST rule is not enforced in kernel mode.
if !self.is_kernel() && self.jumpdests.binary_search(&offset).is_err() {
return Err(ProgramError::InvalidJumpDestination);
}
self.generation_state.registers.program_counter = offset;
if self.halt_offsets.contains(&offset) {
self.running = false;
}
Ok(())
}
fn run_push(&mut self, num_bytes: u8) -> anyhow::Result<(), ProgramError> {
let x = U256::from_big_endian(&self.code_slice(num_bytes as usize));
self.incr(num_bytes as usize);
self.push(x)
}
fn run_dup(&mut self, n: u8) -> anyhow::Result<(), ProgramError> {
let len = self.stack_len();
if !self.is_kernel() && len >= MAX_USER_STACK_SIZE {
return Err(ProgramError::StackOverflow);
}
if n as usize > self.stack_len() {
return Err(ProgramError::StackUnderflow);
}
self.push(stack_peek(&self.generation_state, n as usize - 1)?)
}
fn run_swap(&mut self, n: u8) -> anyhow::Result<(), ProgramError> {
let len = self.stack_len();
if n as usize >= len {
return Err(ProgramError::StackUnderflow);
}
let to_swap = stack_peek(&self.generation_state, n as usize)?;
let old_value = self.stack_segment_mut()[len - n as usize - 1];
self.stack_segment_mut()[len - n as usize - 1] = self.stack_top()?;
let mem_write_op = InterpreterMemOpKind::Write(
old_value,
self.context(),
Segment::Stack as usize,
len - n as usize - 1,
);
self.memops.push(mem_write_op);
self.generation_state.registers.stack_top = to_swap;
Ok(())
}
fn run_get_context(&mut self) -> anyhow::Result<(), ProgramError> {
self.push(self.context().into())
}
fn run_set_context(&mut self) -> anyhow::Result<(), ProgramError> {
let new_ctx = self.pop()?.as_usize();
let sp_to_save = self.stack_len().into();
let old_ctx = self.context();
let sp_field = ContextMetadata::StackSize as usize;
let old_sp_addr = MemoryAddress::new(old_ctx, Segment::ContextMetadata, sp_field);
let new_sp_addr = MemoryAddress::new(new_ctx, Segment::ContextMetadata, sp_field);
self.generation_state.memory.set(old_sp_addr, sp_to_save);
let new_sp = self.generation_state.memory.get(new_sp_addr).as_usize();
if new_sp > 0 {
let new_stack_top = self.generation_state.memory.contexts[new_ctx].segments
[Segment::Stack as usize]
.content[new_sp - 1];
self.generation_state.registers.stack_top = new_stack_top;
}
self.set_context(new_ctx);
self.generation_state.registers.stack_len = new_sp;
Ok(())
}
fn run_mload_general(&mut self) -> anyhow::Result<(), ProgramError> {
let context = self.pop()?.as_usize();
let segment = Segment::all()[self.pop()?.as_usize()];
let offset = self.pop()?.as_usize();
let value = self
.generation_state
.memory
.mload_general(context, segment, offset);
assert!(value.bits() <= segment.bit_range());
self.push(value)
}
fn run_mload_32bytes(&mut self) -> anyhow::Result<(), ProgramError> {
let context = self.pop()?.as_usize();
let segment = Segment::all()[self.pop()?.as_usize()];
let offset = self.pop()?.as_usize();
let len = self.pop()?.as_usize();
if len > 32 {
return Err(ProgramError::IntegerTooLarge);
}
let bytes: Vec<u8> = (0..len)
.map(|i| {
self.generation_state
.memory
.mload_general(context, segment, offset + i)
.low_u32() as u8
})
.collect();
let value = U256::from_big_endian(&bytes);
self.push(value)
}
fn run_mstore_general(&mut self) -> anyhow::Result<(), ProgramError> {
let value = self.pop()?;
let context = self.pop()?.as_usize();
let segment = Segment::all()[self.pop()?.as_usize()];
let offset = self.pop()?.as_usize();
let memop = self
.generation_state
.memory
.mstore_general(context, segment, offset, value);
self.memops.push(memop);
Ok(())
}
fn run_mstore_32bytes(&mut self, n: u8) -> anyhow::Result<(), ProgramError> {
let context = self.pop()?.as_usize();
let segment = Segment::all()[self.pop()?.as_usize()];
let offset = self.pop()?.as_usize();
let value = self.pop()?;
let mut bytes = vec![0; 32];
value.to_little_endian(&mut bytes);
bytes.resize(n as usize, 0);
bytes.reverse();
for (i, &byte) in bytes.iter().enumerate() {
let memop = self.generation_state.memory.mstore_general(
context,
segment,
offset + i,
byte.into(),
);
self.memops.push(memop);
}
self.push(U256::from(offset + n as usize))
}
fn run_exit_kernel(&mut self) -> anyhow::Result<(), ProgramError> {
let kexit_info = self.pop()?;
let kexit_info_u64 = kexit_info.0[0];
let program_counter = kexit_info_u64 as u32 as usize;
let is_kernel_mode_val = (kexit_info_u64 >> 32) as u32;
assert!(is_kernel_mode_val == 0 || is_kernel_mode_val == 1);
let is_kernel_mode = is_kernel_mode_val != 0;
let gas_used_val = kexit_info.0[3];
TryInto::<u64>::try_into(gas_used_val).map_err(|_| ProgramError::GasLimitError)?;
self.generation_state.registers.program_counter = program_counter;
self.set_is_kernel(is_kernel_mode);
self.generation_state.registers.gas_used = gas_used_val;
Ok(())
}
fn run_exception(&mut self, exc_code: u8) -> Result<(), ProgramError> {
let disallowed_len = MAX_USER_STACK_SIZE + 1;
if self.stack_len() == disallowed_len {
// This is a stack overflow that should have been caught earlier.
return Err(ProgramError::StackOverflow);
};
let handler_jumptable_addr = KERNEL.global_labels["exception_jumptable"];
let handler_addr = {
let offset = handler_jumptable_addr + (exc_code as usize) * (BYTES_PER_OFFSET as usize);
assert_eq!(BYTES_PER_OFFSET, 3, "Code below assumes 3 bytes per offset");
self.get_memory_segment(Segment::Code)[offset..offset + 3]
.iter()
.fold(U256::from(0), |acc, &elt| acc * 256 + elt)
};
let new_program_counter = u256_to_usize(handler_addr)?;
let exc_info = U256::from(self.generation_state.registers.program_counter)
+ (U256::from(self.generation_state.registers.gas_used) << 192);
self.push(exc_info)?;
// Set registers before pushing to the stack; in particular, we need to set kernel mode so we
// can't incorrectly trigger a stack overflow. However, note that we have to do it _after_ we
// make `exc_info`, which should contain the old values.
self.generation_state.registers.program_counter = new_program_counter;
self.set_is_kernel(true);
self.generation_state.registers.gas_used = 0;
Ok(())
}
pub(crate) const fn stack_len(&self) -> usize {
self.generation_state.registers.stack_len
}
pub(crate) fn stack_top(&self) -> anyhow::Result<U256, ProgramError> {
if self.stack_len() > 0 {
Ok(self.generation_state.registers.stack_top)
} else {
Err(ProgramError::StackUnderflow)
}
}
pub(crate) const fn is_kernel(&self) -> bool {
self.generation_state.registers.is_kernel
}
pub(crate) fn set_is_kernel(&mut self, is_kernel: bool) {
self.generation_state.registers.is_kernel = is_kernel
}
pub(crate) const fn context(&self) -> usize {
self.generation_state.registers.context
}
pub(crate) fn set_context(&mut self, context: usize) {
if context == 0 {
assert!(self.is_kernel());
}
self.generation_state.registers.context = context;
}
}
// Computes the two's complement of the given integer.
fn two_complement(x: U256) -> U256 {
let flipped_bits = x ^ MINUS_ONE;
flipped_bits.overflowing_add(U256::one()).0
}
fn signed_cmp(x: U256, y: U256) -> Ordering {
let x_is_zero = x.is_zero();
let y_is_zero = y.is_zero();
if x_is_zero && y_is_zero {
return Ordering::Equal;
}
let x_is_pos = x.eq(&(x & SIGN_MASK));
let y_is_pos = y.eq(&(y & SIGN_MASK));
if x_is_zero {
if y_is_pos {
return Ordering::Less;
} else {
return Ordering::Greater;
}
};
if y_is_zero {
if x_is_pos {
return Ordering::Greater;
} else {
return Ordering::Less;
}
};
match (x_is_pos, y_is_pos) {
(true, true) => x.cmp(&y),
(true, false) => Ordering::Greater,
(false, true) => Ordering::Less,
(false, false) => x.cmp(&y).reverse(),
}
}
/// -1 in two's complement representation consists in all bits set to 1.
const MINUS_ONE: U256 = U256([
0xffffffffffffffff,
0xffffffffffffffff,
0xffffffffffffffff,
0xffffffffffffffff,
]);
/// -2^255 in two's complement representation consists in the MSB set to 1.
const MIN_VALUE: U256 = U256([
0x0000000000000000,
0x0000000000000000,
0x0000000000000000,
0x8000000000000000,
]);
const SIGN_MASK: U256 = U256([
0xffffffffffffffff,
0xffffffffffffffff,
0xffffffffffffffff,
0x7fffffffffffffff,
]);
/// Return the (ordered) JUMPDEST offsets in the code.
fn find_jumpdests(code: &[u8]) -> Vec<usize> {
let mut offset = 0;
let mut res = Vec::new();
while offset < code.len() {
let opcode = code[offset];
match opcode {
0x5b => res.push(offset),
x if (0x60..0x80).contains(&x) => offset += x as usize - 0x5f, // PUSH instruction, disregard data.
_ => (),
}
offset += 1;
}
res
}
fn get_mnemonic(opcode: u8) -> &'static str {
match opcode {
0x00 => "STOP",
0x01 => "ADD",
0x02 => "MUL",
0x03 => "SUB",
0x04 => "DIV",
0x05 => "SDIV",
0x06 => "MOD",
0x07 => "SMOD",
0x08 => "ADDMOD",
0x09 => "MULMOD",
0x0a => "EXP",
0x0b => "SIGNEXTEND",
0x0c => "ADDFP254",
0x0d => "MULFP254",
0x0e => "SUBFP254",
0x0f => "SUBMOD",
0x10 => "LT",
0x11 => "GT",
0x12 => "SLT",
0x13 => "SGT",
0x14 => "EQ",
0x15 => "ISZERO",
0x16 => "AND",
0x17 => "OR",
0x18 => "XOR",
0x19 => "NOT",
0x1a => "BYTE",
0x1b => "SHL",
0x1c => "SHR",
0x1d => "SAR",
0x20 => "KECCAK256",
0x21 => "KECCAK_GENERAL",
0x30 => "ADDRESS",
0x31 => "BALANCE",
0x32 => "ORIGIN",
0x33 => "CALLER",
0x34 => "CALLVALUE",
0x35 => "CALLDATALOAD",
0x36 => "CALLDATASIZE",
0x37 => "CALLDATACOPY",
0x38 => "CODESIZE",
0x39 => "CODECOPY",
0x3a => "GASPRICE",
0x3b => "EXTCODESIZE",
0x3c => "EXTCODECOPY",
0x3d => "RETURNDATASIZE",
0x3e => "RETURNDATACOPY",
0x3f => "EXTCODEHASH",
0x40 => "BLOCKHASH",
0x41 => "COINBASE",
0x42 => "TIMESTAMP",
0x43 => "NUMBER",
0x44 => "DIFFICULTY",
0x45 => "GASLIMIT",
0x46 => "CHAINID",
0x48 => "BASEFEE",
0x49 => "PROVER_INPUT",
0x50 => "POP",
0x51 => "MLOAD",
0x52 => "MSTORE",
0x53 => "MSTORE8",
0x54 => "SLOAD",
0x55 => "SSTORE",
0x56 => "JUMP",
0x57 => "JUMPI",
0x58 => "GETPC",
0x59 => "MSIZE",
0x5a => "GAS",
0x5b => "JUMPDEST",
0x5f => "PUSH0",
0x60 => "PUSH1",
0x61 => "PUSH2",
0x62 => "PUSH3",
0x63 => "PUSH4",
0x64 => "PUSH5",
0x65 => "PUSH6",
0x66 => "PUSH7",
0x67 => "PUSH8",
0x68 => "PUSH9",
0x69 => "PUSH10",
0x6a => "PUSH11",
0x6b => "PUSH12",
0x6c => "PUSH13",
0x6d => "PUSH14",
0x6e => "PUSH15",
0x6f => "PUSH16",
0x70 => "PUSH17",
0x71 => "PUSH18",
0x72 => "PUSH19",
0x73 => "PUSH20",
0x74 => "PUSH21",
0x75 => "PUSH22",
0x76 => "PUSH23",
0x77 => "PUSH24",
0x78 => "PUSH25",
0x79 => "PUSH26",
0x7a => "PUSH27",
0x7b => "PUSH28",
0x7c => "PUSH29",
0x7d => "PUSH30",
0x7e => "PUSH31",
0x7f => "PUSH32",
0x80 => "DUP1",
0x81 => "DUP2",
0x82 => "DUP3",
0x83 => "DUP4",
0x84 => "DUP5",
0x85 => "DUP6",
0x86 => "DUP7",
0x87 => "DUP8",
0x88 => "DUP9",
0x89 => "DUP10",
0x8a => "DUP11",
0x8b => "DUP12",
0x8c => "DUP13",
0x8d => "DUP14",
0x8e => "DUP15",
0x8f => "DUP16",
0x90 => "SWAP1",
0x91 => "SWAP2",
0x92 => "SWAP3",
0x93 => "SWAP4",
0x94 => "SWAP5",
0x95 => "SWAP6",
0x96 => "SWAP7",
0x97 => "SWAP8",
0x98 => "SWAP9",
0x99 => "SWAP10",
0x9a => "SWAP11",
0x9b => "SWAP12",
0x9c => "SWAP13",
0x9d => "SWAP14",
0x9e => "SWAP15",
0x9f => "SWAP16",
0xa0 => "LOG0",
0xa1 => "LOG1",
0xa2 => "LOG2",
0xa3 => "LOG3",
0xa4 => "LOG4",
0xa5 => "PANIC",
0xc0 => "MSTORE_32BYTES_1",
0xc1 => "MSTORE_32BYTES_2",
0xc2 => "MSTORE_32BYTES_3",
0xc3 => "MSTORE_32BYTES_4",
0xc4 => "MSTORE_32BYTES_5",
0xc5 => "MSTORE_32BYTES_6",
0xc6 => "MSTORE_32BYTES_7",
0xc7 => "MSTORE_32BYTES_8",
0xc8 => "MSTORE_32BYTES_9",
0xc9 => "MSTORE_32BYTES_10",
0xca => "MSTORE_32BYTES_11",
0xcb => "MSTORE_32BYTES_12",
0xcc => "MSTORE_32BYTES_13",
0xcd => "MSTORE_32BYTES_14",
0xce => "MSTORE_32BYTES_15",
0xcf => "MSTORE_32BYTES_16",
0xd0 => "MSTORE_32BYTES_17",
0xd1 => "MSTORE_32BYTES_18",
0xd2 => "MSTORE_32BYTES_19",
0xd3 => "MSTORE_32BYTES_20",
0xd4 => "MSTORE_32BYTES_21",
0xd5 => "MSTORE_32BYTES_22",
0xd6 => "MSTORE_32BYTES_23",
0xd7 => "MSTORE_32BYTES_24",
0xd8 => "MSTORE_32BYTES_25",
0xd9 => "MSTORE_32BYTES_26",
0xda => "MSTORE_32BYTES_27",
0xdb => "MSTORE_32BYTES_28",
0xdc => "MSTORE_32BYTES_29",
0xdd => "MSTORE_32BYTES_30",
0xde => "MSTORE_32BYTES_31",
0xdf => "MSTORE_32BYTES_32",
0xf0 => "CREATE",
0xf1 => "CALL",
0xf2 => "CALLCODE",
0xf3 => "RETURN",
0xf4 => "DELEGATECALL",
0xf5 => "CREATE2",
0xf6 => "GET_CONTEXT",
0xf7 => "SET_CONTEXT",
0xf8 => "MLOAD_32BYTES",
0xf9 => "EXIT_KERNEL",
0xfa => "STATICCALL",
0xfb => "MLOAD_GENERAL",
0xfc => "MSTORE_GENERAL",
0xfd => "REVERT",
0xfe => "INVALID",
0xff => "SELFDESTRUCT",
_ => panic!("Unrecognized opcode {opcode}"),
}
}
#[cfg(test)]
mod tests {
use std::collections::HashMap;
use crate::cpu::kernel::constants::context_metadata::ContextMetadata;
use crate::cpu::kernel::interpreter::{run, Interpreter};
use crate::memory::segments::Segment;
use crate::witness::memory::MemoryAddress;
#[test]
fn test_run() -> anyhow::Result<()> {
let code = vec![
0x60, 0x1, 0x60, 0x2, 0x1, 0x63, 0xde, 0xad, 0xbe, 0xef, 0x56,
]; // PUSH1, 1, PUSH1, 2, ADD, PUSH4 deadbeef, JUMP
assert_eq!(
run(&code, 0, vec![], &HashMap::new())?.stack(),
&[0x3.into()],
);
Ok(())
}
#[test]
fn test_run_with_memory() -> anyhow::Result<()> {
// PUSH1 0xff
// PUSH1 0
// MSTORE
// PUSH1 0
// MLOAD
// PUSH1 1
// MLOAD
// PUSH1 0x42
// PUSH1 0x27
// MSTORE8
let code = [
0x60, 0xff, 0x60, 0x0, 0x52, 0x60, 0, 0x51, 0x60, 0x1, 0x51, 0x60, 0x42, 0x60, 0x27,
0x53,
];
let mut interpreter = Interpreter::new_with_kernel(0, vec![]);
interpreter.set_code(1, code.to_vec());
interpreter.generation_state.memory.contexts[1].segments[Segment::ContextMetadata as usize]
.set(ContextMetadata::GasLimit as usize, 100_000.into());
// Set context and kernel mode.
interpreter.set_context(1);
interpreter.set_is_kernel(false);
// Set memory necessary to sys_stop.
interpreter.generation_state.memory.set(
MemoryAddress::new(
1,
Segment::ContextMetadata,
ContextMetadata::ParentProgramCounter as usize,
),
0xdeadbeefu32.into(),
);
interpreter.generation_state.memory.set(
MemoryAddress::new(
1,
Segment::ContextMetadata,
ContextMetadata::ParentContext as usize,
),
1.into(),
);
interpreter.run()?;
// sys_stop returns `success` and `cum_gas_used`, that we need to pop.
interpreter.pop();
interpreter.pop();
assert_eq!(interpreter.stack(), &[0xff.into(), 0xff00.into()]);
assert_eq!(
interpreter.generation_state.memory.contexts[1].segments[Segment::MainMemory as usize]
.get(0x27),
0x42.into()
);
assert_eq!(
interpreter.generation_state.memory.contexts[1].segments[Segment::MainMemory as usize]
.get(0x1f),
0xff.into()
);
Ok(())
}
}