plonky2/starky/src/factorial_stark.rs
2022-06-23 13:59:06 -07:00

245 lines
8.4 KiB
Rust

use std::marker::PhantomData;
use plonky2::field::extension_field::{Extendable, FieldExtension};
use plonky2::field::packed_field::PackedField;
use plonky2::field::polynomial::PolynomialValues;
use plonky2::hash::hash_types::RichField;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::permutation::PermutationPair;
use crate::stark::Stark;
use crate::util::trace_rows_to_poly_values;
use crate::vars::{StarkEvaluationTargets, StarkEvaluationVars};
/// Toy STARK system used for testing.
/// Computes a Factorial sequence with state `[fact, n]` using the state transition
/// `fact' <- fact * (n + 1), n' <- n + 1`.
#[derive(Copy, Clone)]
struct FactorialStark<F: RichField + Extendable<D>, const D: usize> {
num_rows: usize,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> FactorialStark<F, D> {
// The first public input is `x0`.
const PI_INDEX_X0: usize = 0;
// The second public input is the first element of the last row, which should be equal to
// `num_rows` factorial.
const PI_INDEX_RES: usize = 1;
fn new(num_rows: usize) -> Self {
Self {
num_rows,
_phantom: PhantomData,
}
}
/// Generate the trace using `x0, 1` as initial state values.
fn generate_trace(&self, x0: F) -> Vec<PolynomialValues<F>> {
let mut trace_rows = (0..self.num_rows)
.scan([x0, F::ONE], |acc, _| {
let tmp = *acc;
acc[0] = tmp[0] * (tmp[1] + F::ONE);
acc[1] = tmp[1] + F::ONE;
Some(tmp)
})
.collect::<Vec<_>>();
trace_rows_to_poly_values(trace_rows)
}
}
impl<F: RichField + Extendable<D>, const D: usize> Stark<F, D> for FactorialStark<F, D> {
const COLUMNS: usize = 2;
const PUBLIC_INPUTS: usize = 2;
fn eval_packed_generic<FE, P, const D2: usize>(
&self,
vars: StarkEvaluationVars<FE, P, { Self::COLUMNS }, { Self::PUBLIC_INPUTS }>,
yield_constr: &mut ConstraintConsumer<P>,
) where
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>,
{
// Check public inputs.
yield_constr
.constraint_first_row(vars.local_values[0] - vars.public_inputs[Self::PI_INDEX_X0]);
yield_constr
.constraint_last_row(vars.local_values[0] - vars.public_inputs[Self::PI_INDEX_RES]);
// x0' <- x0 * (x1 + 1)
yield_constr.constraint_transition(
vars.next_values[0] - vars.local_values[0] * (vars.local_values[1] + FE::ONE),
);
// x1' <- x1 + 1
yield_constr.constraint_transition(vars.next_values[1] - vars.local_values[1] - FE::ONE);
}
fn eval_ext_recursively(
&self,
builder: &mut CircuitBuilder<F, D>,
vars: StarkEvaluationTargets<D, { Self::COLUMNS }, { Self::PUBLIC_INPUTS }>,
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
) {
// Check public inputs.
let pis_constraints = [
builder.sub_extension(vars.local_values[0], vars.public_inputs[Self::PI_INDEX_X0]),
builder.sub_extension(vars.local_values[0], vars.public_inputs[Self::PI_INDEX_RES]),
];
yield_constr.constraint_first_row(builder, pis_constraints[0]);
yield_constr.constraint_last_row(builder, pis_constraints[1]);
let one = builder.one_extension();
// x0' <- x0 * (x1 + 1)
let first_col_constraint = {
let tmp1 = builder.add_extension(vars.local_values[1], one);
let tmp2 = builder.mul_extension(vars.local_values[0], tmp1);
builder.sub_extension(vars.next_values[0], tmp2)
};
yield_constr.constraint_transition(builder, first_col_constraint);
// x1' <- x1 + 1
let second_col_constraint = {
let tmp = builder.add_extension(vars.local_values[1], one);
builder.sub_extension(vars.next_values[1], tmp)
};
yield_constr.constraint_transition(builder, second_col_constraint);
}
fn constraint_degree(&self) -> usize {
2
}
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use plonky2::field::extension_field::Extendable;
use plonky2::field::field_types::Field;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::witness::PartialWitness;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::circuit_data::CircuitConfig;
use plonky2::plonk::config::{
AlgebraicHasher, GenericConfig, Hasher, PoseidonGoldilocksConfig,
};
use plonky2::util::timing::TimingTree;
use crate::config::StarkConfig;
use crate::factorial_stark::FactorialStark;
use crate::proof::StarkProofWithPublicInputs;
use crate::prover::prove;
use crate::recursive_verifier::{
add_virtual_stark_proof_with_pis, recursively_verify_stark_proof,
set_stark_proof_with_pis_target,
};
use crate::stark::Stark;
use crate::stark_testing::test_stark_low_degree;
use crate::verifier::verify_stark_proof;
fn factorial<F: Field>(n: usize, x0: F) -> F {
(0..n)
.fold((x0, F::ONE), |x, _| (x.0 * (x.1 + F::ONE), x.1 + F::ONE))
.0
}
#[test]
fn test_factorial_stark() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type S = FactorialStark<F, D>;
let config = StarkConfig::standard_fast_config();
let num_rows = 1 << 3;
let public_inputs = [F::ONE, factorial(num_rows - 1, F::ONE)];
let stark = S::new(num_rows);
let trace = stark.generate_trace(public_inputs[0]);
let proof = prove::<F, C, S, D>(
stark,
&config,
trace,
public_inputs,
&mut TimingTree::default(),
)?;
verify_stark_proof(stark, proof, &config)
}
#[test]
fn test_factorial_stark_degree() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type S = FactorialStark<F, D>;
let num_rows = 1 << 3;
let stark = S::new(num_rows);
test_stark_low_degree(stark)
}
#[test]
fn test_recursive_stark_verifier() -> Result<()> {
init_logger();
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type S = FactorialStark<F, D>;
let config = StarkConfig::standard_fast_config();
let num_rows = 1 << 5;
let public_inputs = [F::ONE, factorial(num_rows - 1, F::ONE)];
let stark = S::new(num_rows);
let trace = stark.generate_trace(public_inputs[0]);
let proof = prove::<F, C, S, D>(
stark,
&config,
trace,
public_inputs,
&mut TimingTree::default(),
)?;
verify_stark_proof(stark, proof.clone(), &config)?;
recursive_proof::<F, C, S, C, D>(stark, proof, &config, true)
}
fn recursive_proof<
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
S: Stark<F, D> + Copy,
InnerC: GenericConfig<D, F = F>,
const D: usize,
>(
stark: S,
inner_proof: StarkProofWithPublicInputs<F, InnerC, D>,
inner_config: &StarkConfig,
print_gate_counts: bool,
) -> Result<()>
where
InnerC::Hasher: AlgebraicHasher<F>,
[(); S::COLUMNS]:,
[(); S::PUBLIC_INPUTS]:,
[(); C::Hasher::HASH_SIZE]:,
{
let circuit_config = CircuitConfig::standard_recursion_config();
let mut builder = CircuitBuilder::<F, D>::new(circuit_config);
let mut pw = PartialWitness::new();
let degree_bits = inner_proof.proof.recover_degree_bits(inner_config);
let pt = add_virtual_stark_proof_with_pis(&mut builder, stark, inner_config, degree_bits);
set_stark_proof_with_pis_target(&mut pw, &pt, &inner_proof);
recursively_verify_stark_proof::<F, InnerC, S, D>(&mut builder, stark, pt, inner_config);
if print_gate_counts {
builder.print_gate_counts(0);
}
let data = builder.build::<C>();
let proof = data.prove(pw)?;
data.verify(proof)
}
fn init_logger() {
let _ = env_logger::builder().format_timestamp(None).try_init();
}
}