2021-06-14 10:28:15 +02:00

346 lines
9.7 KiB
Rust

use std::fmt::{Debug, Display, Formatter};
use std::hash::Hash;
use std::iter::{Product, Sum};
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use rand::Rng;
use crate::field::crandall_field::CrandallField;
use crate::field::extension_field::{FieldExtension, Frobenius, OEF};
use crate::field::field::Field;
/// A quartic extension of `CrandallField`.
#[derive(Copy, Clone, Eq, PartialEq, Hash)]
pub struct QuarticCrandallField(pub(crate) [CrandallField; 4]);
impl OEF<4> for QuarticCrandallField {
// Verifiable in Sage with
// R.<x> = GF(p)[]
// assert (x^4 - 3).is_irreducible()
const W: CrandallField = CrandallField(3);
}
impl Frobenius<4> for QuarticCrandallField {}
impl FieldExtension<4> for QuarticCrandallField {
type BaseField = CrandallField;
fn to_basefield_array(&self) -> [Self::BaseField; 4] {
self.0
}
fn from_basefield_array(arr: [Self::BaseField; 4]) -> Self {
Self(arr)
}
fn from_basefield(x: Self::BaseField) -> Self {
x.into()
}
}
impl From<<Self as FieldExtension<4>>::BaseField> for QuarticCrandallField {
fn from(x: <Self as FieldExtension<4>>::BaseField) -> Self {
Self([
x,
<Self as FieldExtension<4>>::BaseField::ZERO,
<Self as FieldExtension<4>>::BaseField::ZERO,
<Self as FieldExtension<4>>::BaseField::ZERO,
])
}
}
impl Field for QuarticCrandallField {
const ZERO: Self = Self([CrandallField::ZERO; 4]);
const ONE: Self = Self([
CrandallField::ONE,
CrandallField::ZERO,
CrandallField::ZERO,
CrandallField::ZERO,
]);
const TWO: Self = Self([
CrandallField::TWO,
CrandallField::ZERO,
CrandallField::ZERO,
CrandallField::ZERO,
]);
const NEG_ONE: Self = Self([
CrandallField::NEG_ONE,
CrandallField::ZERO,
CrandallField::ZERO,
CrandallField::ZERO,
]);
// Does not fit in 64-bits.
const ORDER: u64 = 0;
const TWO_ADICITY: usize = 30;
const MULTIPLICATIVE_GROUP_GENERATOR: Self = Self([
CrandallField(12476589904174392631),
CrandallField(896937834427772243),
CrandallField(7795248119019507390),
CrandallField(9005769437373554825),
]);
// Chosen so that when raised to the power `1<<(Self::TWO_ADICITY-Self::BaseField::TWO_ADICITY)`,
// we get `Self::BaseField::POWER_OF_TWO_GENERATOR`. This makes `primitive_root_of_unity` coherent
// with the base field which implies that the FFT commutes with field inclusion.
const POWER_OF_TWO_GENERATOR: Self = Self([
CrandallField::ZERO,
CrandallField::ZERO,
CrandallField::ZERO,
CrandallField(15170983443234254033),
]);
// Algorithm 11.3.4 in Handbook of Elliptic and Hyperelliptic Curve Cryptography.
fn try_inverse(&self) -> Option<Self> {
if self.is_zero() {
return None;
}
let a_pow_p = self.frobenius();
let a_pow_p_plus_1 = a_pow_p * *self;
let a_pow_p3_plus_p2 = a_pow_p_plus_1.repeated_frobenius(2);
let a_pow_r_minus_1 = a_pow_p3_plus_p2 * a_pow_p;
let a_pow_r = a_pow_r_minus_1 * *self;
debug_assert!(FieldExtension::<4>::is_in_basefield(&a_pow_r));
Some(a_pow_r_minus_1 * a_pow_r.0[0].inverse().into())
}
fn to_canonical_u64(&self) -> u64 {
self.0[0].to_canonical_u64()
}
fn from_canonical_u64(n: u64) -> Self {
<Self as FieldExtension<4>>::BaseField::from_canonical_u64(n).into()
}
fn rand_from_rng<R: Rng>(rng: &mut R) -> Self {
Self([
<Self as FieldExtension<4>>::BaseField::rand_from_rng(rng),
<Self as FieldExtension<4>>::BaseField::rand_from_rng(rng),
<Self as FieldExtension<4>>::BaseField::rand_from_rng(rng),
<Self as FieldExtension<4>>::BaseField::rand_from_rng(rng),
])
}
}
impl Display for QuarticCrandallField {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(
f,
"{} + {}*a + {}*a^2 + {}*a^3",
self.0[0], self.0[1], self.0[2], self.0[3]
)
}
}
impl Debug for QuarticCrandallField {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
Display::fmt(self, f)
}
}
impl Neg for QuarticCrandallField {
type Output = Self;
#[inline]
fn neg(self) -> Self {
Self([-self.0[0], -self.0[1], -self.0[2], -self.0[3]])
}
}
impl Add for QuarticCrandallField {
type Output = Self;
#[inline]
fn add(self, rhs: Self) -> Self {
Self([
self.0[0] + rhs.0[0],
self.0[1] + rhs.0[1],
self.0[2] + rhs.0[2],
self.0[3] + rhs.0[3],
])
}
}
impl AddAssign for QuarticCrandallField {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl Sum for QuarticCrandallField {
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::ZERO, |acc, x| acc + x)
}
}
impl Sub for QuarticCrandallField {
type Output = Self;
#[inline]
fn sub(self, rhs: Self) -> Self {
Self([
self.0[0] - rhs.0[0],
self.0[1] - rhs.0[1],
self.0[2] - rhs.0[2],
self.0[3] - rhs.0[3],
])
}
}
impl SubAssign for QuarticCrandallField {
#[inline]
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl Mul for QuarticCrandallField {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self {
let Self([a0, a1, a2, a3]) = self;
let Self([b0, b1, b2, b3]) = rhs;
let c0 = a0 * b0 + <Self as OEF<4>>::W * (a1 * b3 + a2 * b2 + a3 * b1);
let c1 = a0 * b1 + a1 * b0 + <Self as OEF<4>>::W * (a2 * b3 + a3 * b2);
let c2 = a0 * b2 + a1 * b1 + a2 * b0 + <Self as OEF<4>>::W * a3 * b3;
let c3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0;
Self([c0, c1, c2, c3])
}
}
impl MulAssign for QuarticCrandallField {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl Product for QuarticCrandallField {
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::ONE, |acc, x| acc * x)
}
}
impl Div for QuarticCrandallField {
type Output = Self;
#[allow(clippy::suspicious_arithmetic_impl)]
fn div(self, rhs: Self) -> Self::Output {
self * rhs.inverse()
}
}
impl DivAssign for QuarticCrandallField {
fn div_assign(&mut self, rhs: Self) {
*self = *self / rhs;
}
}
#[cfg(test)]
mod tests {
use crate::field::extension_field::quartic::QuarticCrandallField;
use crate::field::extension_field::{FieldExtension, Frobenius, OEF};
use crate::field::field::Field;
fn exp_naive<F: Field>(x: F, power: u128) -> F {
let mut current = x;
let mut product = F::ONE;
for j in 0..128 {
if (power >> j & 1) != 0 {
product *= current;
}
current = current.square();
}
product
}
#[test]
fn test_add_neg_sub_mul() {
type F = QuarticCrandallField;
let x = F::rand();
let y = F::rand();
let z = F::rand();
assert_eq!(x + (-x), F::ZERO);
assert_eq!(-x, F::ZERO - x);
assert_eq!(x + x, x * <F as FieldExtension<4>>::BaseField::TWO.into());
assert_eq!(x * (-x), -x.square());
assert_eq!(x + y, y + x);
assert_eq!(x * y, y * x);
assert_eq!(x * (y * z), (x * y) * z);
assert_eq!(x - (y + z), (x - y) - z);
assert_eq!((x + y) - z, x + (y - z));
assert_eq!(x * (y + z), x * y + x * z);
}
#[test]
fn test_inv_div() {
type F = QuarticCrandallField;
let x = F::rand();
let y = F::rand();
let z = F::rand();
assert_eq!(x * x.inverse(), F::ONE);
assert_eq!(x.inverse() * x, F::ONE);
assert_eq!(x.square().inverse(), x.inverse().square());
assert_eq!((x / y) * y, x);
assert_eq!(x / (y * z), (x / y) / z);
assert_eq!((x * y) / z, x * (y / z));
}
#[test]
fn test_frobenius() {
type F = QuarticCrandallField;
const D: usize = 4;
let x = F::rand();
assert_eq!(
exp_naive(x, <F as FieldExtension<D>>::BaseField::ORDER as u128),
x.frobenius()
);
for count in 2..D {
assert_eq!(
x.repeated_frobenius(count),
(0..count).fold(x, |acc, _| acc.frobenius())
);
}
}
#[test]
fn test_field_order() {
// F::ORDER = 340282366831806780677557380898690695168 * 340282366831806780677557380898690695170 + 1
type F = QuarticCrandallField;
let x = F::rand();
assert_eq!(
exp_naive(
exp_naive(x, 340282366831806780677557380898690695168),
340282366831806780677557380898690695170
),
F::ONE
);
}
#[test]
fn test_power_of_two_gen() {
type F = QuarticCrandallField;
// F::ORDER = 2^30 * 1090552343587053358839971118999869 * 98885475095492590491252558464653635 + 1
assert_eq!(
exp_naive(
exp_naive(
F::MULTIPLICATIVE_GROUP_GENERATOR,
1090552343587053358839971118999869
),
98885475095492590491252558464653635
),
F::POWER_OF_TWO_GENERATOR
);
assert_eq!(
F::POWER_OF_TWO_GENERATOR
.exp(1 << (F::TWO_ADICITY - <F as FieldExtension<4>>::BaseField::TWO_ADICITY)),
<F as FieldExtension<4>>::BaseField::POWER_OF_TWO_GENERATOR.into()
);
}
}