mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-10 09:43:09 +00:00
415 lines
12 KiB
Rust
415 lines
12 KiB
Rust
use std::fmt;
|
|
use std::fmt::{Debug, Display, Formatter};
|
|
use std::hash::{Hash, Hasher};
|
|
use std::iter::{Product, Sum};
|
|
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
|
|
|
|
use num::{BigUint, Integer};
|
|
use rand::Rng;
|
|
use serde::{Deserialize, Serialize};
|
|
|
|
use crate::field::extension_field::quadratic::QuadraticExtension;
|
|
use crate::field::extension_field::quartic::QuarticExtension;
|
|
use crate::field::extension_field::{Extendable, Frobenius};
|
|
use crate::field::field_types::{Field, PrimeField, RichField};
|
|
use crate::field::inversion::try_inverse_u64;
|
|
use crate::util::{assume, branch_hint};
|
|
|
|
const EPSILON: u64 = (1 << 32) - 1;
|
|
|
|
/// A field selected to have fast reduction.
|
|
///
|
|
/// Its order is 2^64 - 2^32 + 1.
|
|
/// ```ignore
|
|
/// P = 2**64 - EPSILON
|
|
/// = 2**64 - 2**32 + 1
|
|
/// = 2**32 * (2**32 - 1) + 1
|
|
/// ```
|
|
#[derive(Copy, Clone, Serialize, Deserialize)]
|
|
#[repr(transparent)]
|
|
pub struct GoldilocksField(pub u64);
|
|
|
|
impl Default for GoldilocksField {
|
|
fn default() -> Self {
|
|
Self::ZERO
|
|
}
|
|
}
|
|
|
|
impl PartialEq for GoldilocksField {
|
|
fn eq(&self, other: &Self) -> bool {
|
|
self.to_canonical_u64() == other.to_canonical_u64()
|
|
}
|
|
}
|
|
|
|
impl Eq for GoldilocksField {}
|
|
|
|
impl Hash for GoldilocksField {
|
|
fn hash<H: Hasher>(&self, state: &mut H) {
|
|
state.write_u64(self.to_canonical_u64())
|
|
}
|
|
}
|
|
|
|
impl Display for GoldilocksField {
|
|
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
|
|
Display::fmt(&self.0, f)
|
|
}
|
|
}
|
|
|
|
impl Debug for GoldilocksField {
|
|
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
|
|
Debug::fmt(&self.0, f)
|
|
}
|
|
}
|
|
|
|
impl Field for GoldilocksField {
|
|
const ZERO: Self = Self(0);
|
|
const ONE: Self = Self(1);
|
|
const TWO: Self = Self(2);
|
|
const NEG_ONE: Self = Self(Self::ORDER - 1);
|
|
|
|
const TWO_ADICITY: usize = 32;
|
|
const CHARACTERISTIC_WITH_TWO_ADICITY: Option<(u64, usize)> =
|
|
Some((Self::ORDER, Self::TWO_ADICITY));
|
|
|
|
// Sage: `g = GF(p).multiplicative_generator()`
|
|
const MULTIPLICATIVE_GROUP_GENERATOR: Self = Self(7);
|
|
|
|
// Sage:
|
|
// ```
|
|
// g_2 = g^((p - 1) / 2^32)
|
|
// g_2.multiplicative_order().factor()
|
|
// ```
|
|
const POWER_OF_TWO_GENERATOR: Self = Self(1753635133440165772);
|
|
|
|
const BITS: usize = 64;
|
|
|
|
fn order() -> BigUint {
|
|
Self::ORDER.into()
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn try_inverse(&self) -> Option<Self> {
|
|
try_inverse_u64(self)
|
|
}
|
|
|
|
fn from_biguint(n: BigUint) -> Self {
|
|
Self(n.mod_floor(&Self::order()).to_u64_digits()[0])
|
|
}
|
|
|
|
fn to_biguint(&self) -> BigUint {
|
|
self.to_canonical_u64().into()
|
|
}
|
|
|
|
#[inline]
|
|
fn from_canonical_u64(n: u64) -> Self {
|
|
debug_assert!(n < Self::ORDER);
|
|
Self(n)
|
|
}
|
|
|
|
fn from_noncanonical_u128(n: u128) -> Self {
|
|
reduce128(n)
|
|
}
|
|
|
|
fn rand_from_rng<R: Rng>(rng: &mut R) -> Self {
|
|
Self::from_canonical_u64(rng.gen_range(0..Self::ORDER))
|
|
}
|
|
|
|
#[inline]
|
|
fn multiply_accumulate(&self, x: Self, y: Self) -> Self {
|
|
// u64 + u64 * u64 cannot overflow.
|
|
reduce128((self.0 as u128) + (x.0 as u128) * (y.0 as u128))
|
|
}
|
|
}
|
|
|
|
impl PrimeField for GoldilocksField {
|
|
const ORDER: u64 = 0xFFFFFFFF00000001;
|
|
|
|
#[inline]
|
|
fn to_canonical_u64(&self) -> u64 {
|
|
let mut c = self.0;
|
|
// We only need one condition subtraction, since 2 * ORDER would not fit in a u64.
|
|
if c >= Self::ORDER {
|
|
c -= Self::ORDER;
|
|
}
|
|
c
|
|
}
|
|
|
|
fn to_noncanonical_u64(&self) -> u64 {
|
|
self.0
|
|
}
|
|
|
|
#[inline]
|
|
fn from_noncanonical_u64(n: u64) -> Self {
|
|
Self(n)
|
|
}
|
|
|
|
#[inline]
|
|
unsafe fn add_canonical_u64(&self, rhs: u64) -> Self {
|
|
let (res_wrapped, carry) = self.0.overflowing_add(rhs);
|
|
// Add EPSILON * carry cannot overflow unless rhs is not in canonical form.
|
|
Self(res_wrapped + EPSILON * (carry as u64))
|
|
}
|
|
|
|
#[inline]
|
|
unsafe fn sub_canonical_u64(&self, rhs: u64) -> Self {
|
|
let (res_wrapped, borrow) = self.0.overflowing_sub(rhs);
|
|
// Sub EPSILON * carry cannot underflow unless rhs is not in canonical form.
|
|
Self(res_wrapped - EPSILON * (borrow as u64))
|
|
}
|
|
}
|
|
|
|
impl Neg for GoldilocksField {
|
|
type Output = Self;
|
|
|
|
#[inline]
|
|
fn neg(self) -> Self {
|
|
if self.is_zero() {
|
|
Self::ZERO
|
|
} else {
|
|
Self(Self::ORDER - self.to_canonical_u64())
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Add for GoldilocksField {
|
|
type Output = Self;
|
|
|
|
#[inline]
|
|
#[allow(clippy::suspicious_arithmetic_impl)]
|
|
fn add(self, rhs: Self) -> Self {
|
|
let (sum, over) = self.0.overflowing_add(rhs.0);
|
|
let (mut sum, over) = sum.overflowing_add((over as u64) * EPSILON);
|
|
if over {
|
|
// NB: self.0 > Self::ORDER && rhs.0 > Self::ORDER is necessary but not sufficient for
|
|
// double-overflow.
|
|
// This assume does two things:
|
|
// 1. If compiler knows that either self.0 or rhs.0 <= ORDER, then it can skip this
|
|
// check.
|
|
// 2. Hints to the compiler how rare this double-overflow is (thus handled better with
|
|
// a branch).
|
|
assume(self.0 > Self::ORDER && rhs.0 > Self::ORDER);
|
|
branch_hint();
|
|
sum += EPSILON; // Cannot overflow.
|
|
}
|
|
Self(sum)
|
|
}
|
|
}
|
|
|
|
impl AddAssign for GoldilocksField {
|
|
#[inline]
|
|
fn add_assign(&mut self, rhs: Self) {
|
|
*self = *self + rhs;
|
|
}
|
|
}
|
|
|
|
impl Sum for GoldilocksField {
|
|
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
|
|
iter.fold(Self::ZERO, |acc, x| acc + x)
|
|
}
|
|
}
|
|
|
|
impl Sub for GoldilocksField {
|
|
type Output = Self;
|
|
|
|
#[inline]
|
|
#[allow(clippy::suspicious_arithmetic_impl)]
|
|
fn sub(self, rhs: Self) -> Self {
|
|
let (diff, under) = self.0.overflowing_sub(rhs.0);
|
|
let (mut diff, under) = diff.overflowing_sub((under as u64) * EPSILON);
|
|
if under {
|
|
// NB: self.0 < EPSILON - 1 && rhs.0 > Self::ORDER is necessary but not sufficient for
|
|
// double-underflow.
|
|
// This assume does two things:
|
|
// 1. If compiler knows that either self.0 >= EPSILON - 1 or rhs.0 <= ORDER, then it
|
|
// can skip this check.
|
|
// 2. Hints to the compiler how rare this double-underflow is (thus handled better
|
|
// with a branch).
|
|
assume(self.0 < EPSILON - 1 && rhs.0 > Self::ORDER);
|
|
branch_hint();
|
|
diff -= EPSILON; // Cannot underflow.
|
|
}
|
|
Self(diff)
|
|
}
|
|
}
|
|
|
|
impl SubAssign for GoldilocksField {
|
|
#[inline]
|
|
fn sub_assign(&mut self, rhs: Self) {
|
|
*self = *self - rhs;
|
|
}
|
|
}
|
|
|
|
impl Mul for GoldilocksField {
|
|
type Output = Self;
|
|
|
|
#[inline]
|
|
fn mul(self, rhs: Self) -> Self {
|
|
reduce128((self.0 as u128) * (rhs.0 as u128))
|
|
}
|
|
}
|
|
|
|
impl MulAssign for GoldilocksField {
|
|
#[inline]
|
|
fn mul_assign(&mut self, rhs: Self) {
|
|
*self = *self * rhs;
|
|
}
|
|
}
|
|
|
|
impl Product for GoldilocksField {
|
|
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
|
|
iter.fold(Self::ONE, |acc, x| acc * x)
|
|
}
|
|
}
|
|
|
|
impl Div for GoldilocksField {
|
|
type Output = Self;
|
|
|
|
#[allow(clippy::suspicious_arithmetic_impl)]
|
|
fn div(self, rhs: Self) -> Self::Output {
|
|
self * rhs.inverse()
|
|
}
|
|
}
|
|
|
|
impl DivAssign for GoldilocksField {
|
|
fn div_assign(&mut self, rhs: Self) {
|
|
*self = *self / rhs;
|
|
}
|
|
}
|
|
|
|
impl Extendable<2> for GoldilocksField {
|
|
type Extension = QuadraticExtension<Self>;
|
|
|
|
// Verifiable in Sage with
|
|
// `R.<x> = GF(p)[]; assert (x^2 - 7).is_irreducible()`.
|
|
const W: Self = Self(7);
|
|
|
|
// DTH_ROOT = W^((ORDER - 1)/2)
|
|
const DTH_ROOT: Self = Self(18446744069414584320);
|
|
|
|
const EXT_MULTIPLICATIVE_GROUP_GENERATOR: [Self; 2] =
|
|
[Self(18081566051660590251), Self(16121475356294670766)];
|
|
|
|
const EXT_POWER_OF_TWO_GENERATOR: [Self; 2] = [Self(0), Self(15659105665374529263)];
|
|
}
|
|
|
|
impl Extendable<4> for GoldilocksField {
|
|
type Extension = QuarticExtension<Self>;
|
|
|
|
const W: Self = Self(7);
|
|
|
|
// DTH_ROOT = W^((ORDER - 1)/4)
|
|
const DTH_ROOT: Self = Self(281474976710656);
|
|
|
|
const EXT_MULTIPLICATIVE_GROUP_GENERATOR: [Self; 4] = [
|
|
Self(5024755240244648895),
|
|
Self(13227474371289740625),
|
|
Self(3912887029498544536),
|
|
Self(3900057112666848848),
|
|
];
|
|
|
|
const EXT_POWER_OF_TWO_GENERATOR: [Self; 4] =
|
|
[Self(0), Self(0), Self(0), Self(12587610116473453104)];
|
|
}
|
|
|
|
impl RichField for GoldilocksField {}
|
|
|
|
/// Fast addition modulo ORDER for x86-64.
|
|
/// This function is marked unsafe for the following reasons:
|
|
/// - It is only correct if x + y < 2**64 + ORDER = 0x1ffffffff00000001.
|
|
/// - It is only faster in some circumstances. In particular, on x86 it overwrites both inputs in
|
|
/// the registers, so its use is not recommended when either input will be used again.
|
|
#[inline(always)]
|
|
#[cfg(target_arch = "x86_64")]
|
|
unsafe fn add_no_canonicalize_trashing_input(x: u64, y: u64) -> u64 {
|
|
let res_wrapped: u64;
|
|
let adjustment: u64;
|
|
asm!(
|
|
"add {0}, {1}",
|
|
// Trick. The carry flag is set iff the addition overflowed.
|
|
// sbb x, y does x := x - y - CF. In our case, x and y are both {1:e}, so it simply does
|
|
// {1:e} := 0xffffffff on overflow and {1:e} := 0 otherwise. {1:e} is the low 32 bits of
|
|
// {1}; the high 32-bits are zeroed on write. In the end, we end up with 0xffffffff in {1}
|
|
// on overflow; this happens be EPSILON.
|
|
// Note that the CPU does not realize that the result of sbb x, x does not actually depend
|
|
// on x. We must write the result to a register that we know to be ready. We have a
|
|
// dependency on {1} anyway, so let's use it.
|
|
"sbb {1:e}, {1:e}",
|
|
inlateout(reg) x => res_wrapped,
|
|
inlateout(reg) y => adjustment,
|
|
options(pure, nomem, nostack),
|
|
);
|
|
assume(x != 0 || (res_wrapped == y && adjustment == 0));
|
|
assume(y != 0 || (res_wrapped == x && adjustment == 0));
|
|
// Add EPSILON == subtract ORDER.
|
|
// Cannot overflow unless the assumption if x + y < 2**64 + ORDER is incorrect.
|
|
res_wrapped + adjustment
|
|
}
|
|
|
|
#[inline(always)]
|
|
#[cfg(not(target_arch = "x86_64"))]
|
|
unsafe fn add_no_canonicalize_trashing_input(x: u64, y: u64) -> u64 {
|
|
let (res_wrapped, carry) = x.overflowing_add(y);
|
|
// Below cannot overflow unless the assumption if x + y < 2**64 + ORDER is incorrect.
|
|
res_wrapped + EPSILON * (carry as u64)
|
|
}
|
|
|
|
/// Fast subtraction modulo ORDER for x86-64.
|
|
/// This function is marked unsafe for the following reasons:
|
|
/// - It is only correct if x - y >= -ORDER.
|
|
/// - It is only faster in some circumstances. In particular, on x86 it overwrites both inputs in
|
|
/// the registers, so its use is not recommended when either input will be used again.
|
|
#[inline(always)]
|
|
#[cfg(target_arch = "x86_64")]
|
|
unsafe fn sub_no_canonicalize_trashing_input(x: u64, y: u64) -> u64 {
|
|
let res_wrapped: u64;
|
|
let adjustment: u64;
|
|
asm!(
|
|
"sub {0}, {1}",
|
|
"sbb {1:e}, {1:e}", // See add_no_canonicalize_trashing_input.
|
|
inlateout(reg) x => res_wrapped,
|
|
inlateout(reg) y => adjustment,
|
|
options(pure, nomem, nostack),
|
|
);
|
|
assume(y != 0 || (res_wrapped == x && adjustment == 0));
|
|
// Subtract EPSILON == add ORDER.
|
|
// Cannot underflow unless the assumption x - y >= -ORDER is incorrect.
|
|
res_wrapped - adjustment
|
|
}
|
|
|
|
#[inline(always)]
|
|
#[cfg(not(target_arch = "x86_64"))]
|
|
unsafe fn sub_no_canonicalize_trashing_input(x: u64, y: u64) -> u64 {
|
|
let (res_wrapped, borrow) = x.overflowing_sub(y);
|
|
// Below cannot underflow unless the assumption x - y >= -ORDER is incorrect.
|
|
res_wrapped - EPSILON * (borrow as u64)
|
|
}
|
|
|
|
/// Reduces to a 64-bit value. The result might not be in canonical form; it could be in between the
|
|
/// field order and `2^64`.
|
|
#[inline]
|
|
fn reduce128(x: u128) -> GoldilocksField {
|
|
let (x_lo, x_hi) = split(x); // This is a no-op
|
|
let x_hi_hi = x_hi >> 32;
|
|
let x_hi_lo = x_hi & EPSILON;
|
|
|
|
let t0 = unsafe { sub_no_canonicalize_trashing_input(x_lo, x_hi_hi) };
|
|
let t1 = x_hi_lo * EPSILON;
|
|
let t2 = unsafe { add_no_canonicalize_trashing_input(t0, t1) };
|
|
GoldilocksField(t2)
|
|
}
|
|
|
|
#[inline]
|
|
fn split(x: u128) -> (u64, u64) {
|
|
(x as u64, (x >> 64) as u64)
|
|
}
|
|
|
|
impl Frobenius<1> for GoldilocksField {}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use crate::{test_field_arithmetic, test_prime_field_arithmetic};
|
|
|
|
test_prime_field_arithmetic!(crate::field::goldilocks_field::GoldilocksField);
|
|
test_field_arithmetic!(crate::field::goldilocks_field::GoldilocksField);
|
|
}
|