plonky2/evm/src/cpu/kernel/interpreter.rs
2023-03-07 17:47:09 -08:00

1027 lines
35 KiB
Rust

//! An EVM interpreter for testing and debugging purposes.
use std::collections::HashMap;
use anyhow::{anyhow, bail, ensure};
use ethereum_types::{U256, U512};
use keccak_hash::keccak;
use plonky2::field::goldilocks_field::GoldilocksField;
use crate::cpu::kernel::aggregator::KERNEL;
use crate::cpu::kernel::constants::context_metadata::ContextMetadata;
use crate::cpu::kernel::constants::global_metadata::GlobalMetadata;
use crate::cpu::kernel::constants::txn_fields::NormalizedTxnField;
use crate::generation::prover_input::ProverInputFn;
use crate::generation::state::GenerationState;
use crate::generation::GenerationInputs;
use crate::memory::segments::Segment;
use crate::witness::memory::{MemoryAddress, MemoryContextState, MemorySegmentState, MemoryState};
use crate::witness::util::stack_peek;
type F = GoldilocksField;
/// Halt interpreter execution whenever a jump to this offset is done.
const DEFAULT_HALT_OFFSET: usize = 0xdeadbeef;
/// Order of the BN254 base field.
const BN_BASE: U256 = U256([
4332616871279656263,
10917124144477883021,
13281191951274694749,
3486998266802970665,
]);
impl MemoryState {
pub(crate) fn mload_general(&self, context: usize, segment: Segment, offset: usize) -> U256 {
self.get(MemoryAddress::new(context, segment, offset))
}
fn mstore_general(&mut self, context: usize, segment: Segment, offset: usize, value: U256) {
self.set(MemoryAddress::new(context, segment, offset), value);
}
}
pub struct Interpreter<'a> {
kernel_mode: bool,
jumpdests: Vec<usize>,
pub(crate) context: usize,
pub(crate) generation_state: GenerationState<F>,
prover_inputs_map: &'a HashMap<usize, ProverInputFn>,
pub(crate) halt_offsets: Vec<usize>,
pub(crate) debug_offsets: Vec<usize>,
running: bool,
opcode_count: [usize; 0x100],
}
pub fn run_interpreter(
initial_offset: usize,
initial_stack: Vec<U256>,
) -> anyhow::Result<Interpreter<'static>> {
run(
&KERNEL.code,
initial_offset,
initial_stack,
&KERNEL.prover_inputs,
)
}
pub struct InterpreterMemoryInitialization {
pub label: String,
pub stack: Vec<U256>,
pub segment: Segment,
pub memory: Vec<(usize, Vec<U256>)>,
}
pub fn run_interpreter_with_memory(
memory_init: InterpreterMemoryInitialization,
) -> anyhow::Result<Interpreter<'static>> {
let label = KERNEL.global_labels[&memory_init.label];
let mut stack = memory_init.stack;
stack.reverse();
let mut interpreter = Interpreter::new_with_kernel(label, stack);
for (pointer, data) in memory_init.memory {
for (i, term) in data.iter().enumerate() {
interpreter.generation_state.memory.set(
MemoryAddress::new(0, memory_init.segment, pointer + i),
*term,
)
}
}
interpreter.run()?;
Ok(interpreter)
}
pub fn run<'a>(
code: &'a [u8],
initial_offset: usize,
initial_stack: Vec<U256>,
prover_inputs: &'a HashMap<usize, ProverInputFn>,
) -> anyhow::Result<Interpreter<'a>> {
let mut interpreter = Interpreter::new(code, initial_offset, initial_stack, prover_inputs);
interpreter.run()?;
Ok(interpreter)
}
impl<'a> Interpreter<'a> {
pub(crate) fn new_with_kernel(initial_offset: usize, initial_stack: Vec<U256>) -> Self {
Self::new(
&KERNEL.code,
initial_offset,
initial_stack,
&KERNEL.prover_inputs,
)
}
pub(crate) fn new(
code: &'a [u8],
initial_offset: usize,
initial_stack: Vec<U256>,
prover_inputs: &'a HashMap<usize, ProverInputFn>,
) -> Self {
let mut result = Self {
kernel_mode: true,
jumpdests: find_jumpdests(code),
generation_state: GenerationState::new(GenerationInputs::default(), code),
prover_inputs_map: prover_inputs,
context: 0,
halt_offsets: vec![DEFAULT_HALT_OFFSET],
debug_offsets: vec![],
running: false,
opcode_count: [0; 0x100],
};
result.generation_state.registers.program_counter = initial_offset;
result.generation_state.registers.stack_len = initial_stack.len();
*result.stack_mut() = initial_stack;
result
}
pub(crate) fn run(&mut self) -> anyhow::Result<()> {
self.running = true;
while self.running {
self.run_opcode()?;
}
println!("Opcode count:");
for i in 0..0x100 {
if self.opcode_count[i] > 0 {
println!("{}: {}", get_mnemonic(i as u8), self.opcode_count[i])
}
}
println!("Total: {}", self.opcode_count.into_iter().sum::<usize>());
Ok(())
}
fn code(&self) -> &MemorySegmentState {
&self.generation_state.memory.contexts[self.context].segments[Segment::Code as usize]
}
fn code_slice(&self, n: usize) -> Vec<u8> {
let pc = self.generation_state.registers.program_counter;
self.code().content[pc..pc + n]
.iter()
.map(|u256| u256.byte(0))
.collect::<Vec<_>>()
}
pub(crate) fn get_txn_field(&self, field: NormalizedTxnField) -> U256 {
self.generation_state.memory.contexts[0].segments[Segment::TxnFields as usize]
.get(field as usize)
}
pub(crate) fn set_txn_field(&mut self, field: NormalizedTxnField, value: U256) {
self.generation_state.memory.contexts[0].segments[Segment::TxnFields as usize]
.set(field as usize, value);
}
pub(crate) fn get_txn_data(&self) -> &[U256] {
&self.generation_state.memory.contexts[0].segments[Segment::TxnData as usize].content
}
pub(crate) fn get_global_metadata_field(&self, field: GlobalMetadata) -> U256 {
self.generation_state.memory.contexts[0].segments[Segment::GlobalMetadata as usize]
.get(field as usize)
}
pub(crate) fn set_global_metadata_field(&mut self, field: GlobalMetadata, value: U256) {
self.generation_state.memory.contexts[0].segments[Segment::GlobalMetadata as usize]
.set(field as usize, value)
}
pub(crate) fn get_trie_data(&self) -> &[U256] {
&self.generation_state.memory.contexts[0].segments[Segment::TrieData as usize].content
}
pub(crate) fn get_trie_data_mut(&mut self) -> &mut Vec<U256> {
&mut self.generation_state.memory.contexts[0].segments[Segment::TrieData as usize].content
}
pub(crate) fn get_memory_segment(&self, segment: Segment) -> Vec<U256> {
self.generation_state.memory.contexts[0].segments[segment as usize]
.content
.clone()
}
pub(crate) fn get_memory_segment_bytes(&self, segment: Segment) -> Vec<u8> {
self.generation_state.memory.contexts[0].segments[segment as usize]
.content
.iter()
.map(|x| x.as_u32() as u8)
.collect()
}
pub(crate) fn get_kernel_general_memory(&self) -> Vec<U256> {
self.get_memory_segment(Segment::KernelGeneral)
}
pub(crate) fn get_rlp_memory(&self) -> Vec<u8> {
self.get_memory_segment_bytes(Segment::RlpRaw)
}
pub(crate) fn set_memory_segment(&mut self, segment: Segment, memory: Vec<U256>) {
self.generation_state.memory.contexts[0].segments[segment as usize].content = memory;
}
pub(crate) fn set_kernel_general_memory(&mut self, memory: Vec<U256>) {
self.set_memory_segment(Segment::KernelGeneral, memory)
}
pub(crate) fn set_memory_segment_bytes(&mut self, segment: Segment, memory: Vec<u8>) {
self.generation_state.memory.contexts[0].segments[segment as usize].content =
memory.into_iter().map(U256::from).collect();
}
pub(crate) fn set_rlp_memory(&mut self, rlp: Vec<u8>) {
self.set_memory_segment_bytes(Segment::RlpRaw, rlp)
}
pub(crate) fn set_code(&mut self, context: usize, code: Vec<u8>) {
assert_ne!(context, 0, "Can't modify kernel code.");
while self.generation_state.memory.contexts.len() <= context {
self.generation_state
.memory
.contexts
.push(MemoryContextState::default());
}
self.generation_state.memory.contexts[context].segments[Segment::Code as usize].content =
code.into_iter().map(U256::from).collect();
}
pub(crate) fn get_jumpdest_bits(&self, context: usize) -> Vec<bool> {
self.generation_state.memory.contexts[context].segments[Segment::JumpdestBits as usize]
.content
.iter()
.map(|x| x.bit(0))
.collect()
}
fn incr(&mut self, n: usize) {
self.generation_state.registers.program_counter += n;
}
pub(crate) fn stack(&self) -> &[U256] {
&self.generation_state.memory.contexts[self.context].segments[Segment::Stack as usize]
.content
}
fn stack_mut(&mut self) -> &mut Vec<U256> {
&mut self.generation_state.memory.contexts[self.context].segments[Segment::Stack as usize]
.content
}
pub(crate) fn push(&mut self, x: U256) {
self.stack_mut().push(x);
self.generation_state.registers.stack_len += 1;
}
fn push_bool(&mut self, x: bool) {
self.push(if x { U256::one() } else { U256::zero() });
}
pub(crate) fn pop(&mut self) -> U256 {
let result = stack_peek(&self.generation_state, 0);
self.generation_state.registers.stack_len -= 1;
let new_len = self.stack_len();
self.stack_mut().truncate(new_len);
result.expect("Empty stack")
}
fn run_opcode(&mut self) -> anyhow::Result<()> {
let opcode = self
.code()
.get(self.generation_state.registers.program_counter)
.byte(0);
self.opcode_count[opcode as usize] += 1;
self.incr(1);
match opcode {
0x00 => self.run_stop(), // "STOP",
0x01 => self.run_add(), // "ADD",
0x02 => self.run_mul(), // "MUL",
0x03 => self.run_sub(), // "SUB",
0x04 => self.run_div(), // "DIV",
0x05 => todo!(), // "SDIV",
0x06 => self.run_mod(), // "MOD",
0x07 => todo!(), // "SMOD",
0x08 => self.run_addmod(), // "ADDMOD",
0x09 => self.run_mulmod(), // "MULMOD",
0x0a => self.run_exp(), // "EXP",
0x0b => todo!(), // "SIGNEXTEND",
0x0c => self.run_addfp254(), // "ADDFP254",
0x0d => self.run_mulfp254(), // "MULFP254",
0x0e => self.run_subfp254(), // "SUBFP254",
0x10 => self.run_lt(), // "LT",
0x11 => self.run_gt(), // "GT",
0x12 => todo!(), // "SLT",
0x13 => todo!(), // "SGT",
0x14 => self.run_eq(), // "EQ",
0x15 => self.run_iszero(), // "ISZERO",
0x16 => self.run_and(), // "AND",
0x17 => self.run_or(), // "OR",
0x18 => self.run_xor(), // "XOR",
0x19 => self.run_not(), // "NOT",
0x1a => self.run_byte(), // "BYTE",
0x1b => self.run_shl(), // "SHL",
0x1c => self.run_shr(), // "SHR",
0x1d => todo!(), // "SAR",
0x20 => self.run_keccak256(), // "KECCAK256",
0x21 => self.run_keccak_general(), // "KECCAK_GENERAL",
0x30 => todo!(), // "ADDRESS",
0x31 => todo!(), // "BALANCE",
0x32 => todo!(), // "ORIGIN",
0x33 => todo!(), // "CALLER",
0x34 => self.run_callvalue(), // "CALLVALUE",
0x35 => self.run_calldataload(), // "CALLDATALOAD",
0x36 => self.run_calldatasize(), // "CALLDATASIZE",
0x37 => self.run_calldatacopy(), // "CALLDATACOPY",
0x38 => todo!(), // "CODESIZE",
0x39 => todo!(), // "CODECOPY",
0x3a => todo!(), // "GASPRICE",
0x3b => todo!(), // "EXTCODESIZE",
0x3c => todo!(), // "EXTCODECOPY",
0x3d => todo!(), // "RETURNDATASIZE",
0x3e => todo!(), // "RETURNDATACOPY",
0x3f => todo!(), // "EXTCODEHASH",
0x40 => todo!(), // "BLOCKHASH",
0x41 => todo!(), // "COINBASE",
0x42 => todo!(), // "TIMESTAMP",
0x43 => todo!(), // "NUMBER",
0x44 => todo!(), // "DIFFICULTY",
0x45 => todo!(), // "GASLIMIT",
0x46 => todo!(), // "CHAINID",
0x48 => todo!(), // "BASEFEE",
0x49 => self.run_prover_input()?, // "PROVER_INPUT",
0x50 => self.run_pop(), // "POP",
0x51 => self.run_mload(), // "MLOAD",
0x52 => self.run_mstore(), // "MSTORE",
0x53 => self.run_mstore8(), // "MSTORE8",
0x54 => todo!(), // "SLOAD",
0x55 => todo!(), // "SSTORE",
0x56 => self.run_jump(), // "JUMP",
0x57 => self.run_jumpi(), // "JUMPI",
0x58 => self.run_pc(), // "PC",
0x59 => self.run_msize(), // "MSIZE",
0x5a => todo!(), // "GAS",
0x5b => self.run_jumpdest(), // "JUMPDEST",
x if (0x60..0x80).contains(&x) => self.run_push(x - 0x5f), // "PUSH"
x if (0x80..0x90).contains(&x) => self.run_dup(x - 0x7f), // "DUP"
x if (0x90..0xa0).contains(&x) => self.run_swap(x - 0x8f)?, // "SWAP"
0xa0 => todo!(), // "LOG0",
0xa1 => todo!(), // "LOG1",
0xa2 => todo!(), // "LOG2",
0xa3 => todo!(), // "LOG3",
0xa4 => todo!(), // "LOG4",
0xa5 => bail!("Executed PANIC"), // "PANIC",
0xf0 => todo!(), // "CREATE",
0xf1 => todo!(), // "CALL",
0xf2 => todo!(), // "CALLCODE",
0xf3 => todo!(), // "RETURN",
0xf4 => todo!(), // "DELEGATECALL",
0xf5 => todo!(), // "CREATE2",
0xf6 => self.run_get_context(), // "GET_CONTEXT",
0xf7 => self.run_set_context(), // "SET_CONTEXT",
0xf8 => todo!(), // "CONSUME_GAS",
0xf9 => todo!(), // "EXIT_KERNEL",
0xfa => todo!(), // "STATICCALL",
0xfb => self.run_mload_general(), // "MLOAD_GENERAL",
0xfc => self.run_mstore_general(), // "MSTORE_GENERAL",
0xfd => todo!(), // "REVERT",
0xfe => bail!("Executed INVALID"), // "INVALID",
0xff => todo!(), // "SELFDESTRUCT",
_ => bail!("Unrecognized opcode {}.", opcode),
};
if self
.debug_offsets
.contains(&self.generation_state.registers.program_counter)
{
println!("At {}, stack={:?}", self.offset_name(), self.stack());
} else if let Some(label) = self.offset_label() {
println!("At {label}");
}
Ok(())
}
fn offset_name(&self) -> String {
KERNEL.offset_name(self.generation_state.registers.program_counter)
}
fn offset_label(&self) -> Option<String> {
KERNEL.offset_label(self.generation_state.registers.program_counter)
}
fn run_stop(&mut self) {
self.running = false;
}
fn run_add(&mut self) {
let x = self.pop();
let y = self.pop();
self.push(x.overflowing_add(y).0);
}
fn run_mul(&mut self) {
let x = self.pop();
let y = self.pop();
self.push(x.overflowing_mul(y).0);
}
fn run_sub(&mut self) {
let x = self.pop();
let y = self.pop();
self.push(x.overflowing_sub(y).0);
}
fn run_addfp254(&mut self) {
let x = self.pop() % BN_BASE;
let y = self.pop() % BN_BASE;
// BN_BASE is 254-bit so addition can't overflow
self.push((x + y) % BN_BASE);
}
fn run_mulfp254(&mut self) {
let x = self.pop();
let y = self.pop();
self.push(U256::try_from(x.full_mul(y) % BN_BASE).unwrap());
}
fn run_subfp254(&mut self) {
let x = self.pop() % BN_BASE;
let y = self.pop() % BN_BASE;
// BN_BASE is 254-bit so addition can't overflow
self.push((x + (BN_BASE - y)) % BN_BASE);
}
fn run_div(&mut self) {
let x = self.pop();
let y = self.pop();
self.push(if y.is_zero() { U256::zero() } else { x / y });
}
fn run_mod(&mut self) {
let x = self.pop();
let y = self.pop();
self.push(if y.is_zero() { U256::zero() } else { x % y });
}
fn run_addmod(&mut self) {
let x = U512::from(self.pop());
let y = U512::from(self.pop());
let z = U512::from(self.pop());
self.push(if z.is_zero() {
U256::zero()
} else {
U256::try_from((x + y) % z).unwrap()
});
}
fn run_mulmod(&mut self) {
let x = self.pop();
let y = self.pop();
let z = U512::from(self.pop());
self.push(if z.is_zero() {
U256::zero()
} else {
U256::try_from(x.full_mul(y) % z).unwrap()
});
}
fn run_exp(&mut self) {
let x = self.pop();
let y = self.pop();
self.push(x.overflowing_pow(y).0);
}
fn run_lt(&mut self) {
let x = self.pop();
let y = self.pop();
self.push_bool(x < y);
}
fn run_gt(&mut self) {
let x = self.pop();
let y = self.pop();
self.push_bool(x > y);
}
fn run_eq(&mut self) {
let x = self.pop();
let y = self.pop();
self.push_bool(x == y);
}
fn run_iszero(&mut self) {
let x = self.pop();
self.push_bool(x.is_zero());
}
fn run_and(&mut self) {
let x = self.pop();
let y = self.pop();
self.push(x & y);
}
fn run_or(&mut self) {
let x = self.pop();
let y = self.pop();
self.push(x | y);
}
fn run_xor(&mut self) {
let x = self.pop();
let y = self.pop();
self.push(x ^ y);
}
fn run_not(&mut self) {
let x = self.pop();
self.push(!x);
}
fn run_byte(&mut self) {
let i = self.pop();
let x = self.pop();
let result = if i < 32.into() {
x.byte(31 - i.as_usize())
} else {
0
};
self.push(result.into());
}
fn run_shl(&mut self) {
let shift = self.pop();
let value = self.pop();
self.push(value << shift);
}
fn run_shr(&mut self) {
let shift = self.pop();
let value = self.pop();
self.push(value >> shift);
}
fn run_keccak256(&mut self) {
let offset = self.pop().as_usize();
let size = self.pop().as_usize();
let bytes = (offset..offset + size)
.map(|i| {
self.generation_state
.memory
.mload_general(self.context, Segment::MainMemory, i)
.byte(0)
})
.collect::<Vec<_>>();
let hash = keccak(bytes);
self.push(U256::from_big_endian(hash.as_bytes()));
}
fn run_keccak_general(&mut self) {
let context = self.pop().as_usize();
let segment = Segment::all()[self.pop().as_usize()];
// Not strictly needed but here to avoid surprises with MSIZE.
assert_ne!(segment, Segment::MainMemory, "Call KECCAK256 instead.");
let offset = self.pop().as_usize();
let size = self.pop().as_usize();
let bytes = (offset..offset + size)
.map(|i| {
self.generation_state
.memory
.mload_general(context, segment, i)
.byte(0)
})
.collect::<Vec<_>>();
println!("Hashing {:?}", &bytes);
let hash = keccak(bytes);
self.push(U256::from_big_endian(hash.as_bytes()));
}
fn run_callvalue(&mut self) {
self.push(
self.generation_state.memory.contexts[self.context].segments
[Segment::ContextMetadata as usize]
.get(ContextMetadata::CallValue as usize),
)
}
fn run_calldataload(&mut self) {
let offset = self.pop().as_usize();
let value = U256::from_big_endian(
&(0..32)
.map(|i| {
self.generation_state
.memory
.mload_general(self.context, Segment::Calldata, offset + i)
.byte(0)
})
.collect::<Vec<_>>(),
);
self.push(value);
}
fn run_calldatasize(&mut self) {
self.push(
self.generation_state.memory.contexts[self.context].segments
[Segment::ContextMetadata as usize]
.get(ContextMetadata::CalldataSize as usize),
)
}
fn run_calldatacopy(&mut self) {
let dest_offset = self.pop().as_usize();
let offset = self.pop().as_usize();
let size = self.pop().as_usize();
for i in 0..size {
let calldata_byte = self.generation_state.memory.mload_general(
self.context,
Segment::Calldata,
offset + i,
);
self.generation_state.memory.mstore_general(
self.context,
Segment::MainMemory,
dest_offset + i,
calldata_byte,
);
}
}
fn run_prover_input(&mut self) -> anyhow::Result<()> {
let prover_input_fn = self
.prover_inputs_map
.get(&(self.generation_state.registers.program_counter - 1))
.ok_or_else(|| anyhow!("Offset not in prover inputs."))?;
let output = self.generation_state.prover_input(prover_input_fn);
self.push(output);
Ok(())
}
fn run_pop(&mut self) {
self.pop();
}
fn run_mload(&mut self) {
let offset = self.pop().as_usize();
let value = U256::from_big_endian(
&(0..32)
.map(|i| {
self.generation_state
.memory
.mload_general(self.context, Segment::MainMemory, offset + i)
.byte(0)
})
.collect::<Vec<_>>(),
);
self.push(value);
}
fn run_mstore(&mut self) {
let offset = self.pop().as_usize();
let value = self.pop();
let mut bytes = [0; 32];
value.to_big_endian(&mut bytes);
for (i, byte) in (0..32).zip(bytes) {
self.generation_state.memory.mstore_general(
self.context,
Segment::MainMemory,
offset + i,
byte.into(),
);
}
}
fn run_mstore8(&mut self) {
let offset = self.pop().as_usize();
let value = self.pop();
self.generation_state.memory.mstore_general(
self.context,
Segment::MainMemory,
offset,
value.byte(0).into(),
);
}
fn run_jump(&mut self) {
let x = self.pop().as_usize();
self.jump_to(x);
}
fn run_jumpi(&mut self) {
let x = self.pop().as_usize();
let b = self.pop();
if !b.is_zero() {
self.jump_to(x);
}
}
fn run_pc(&mut self) {
self.push((self.generation_state.registers.program_counter - 1).into());
}
fn run_msize(&mut self) {
self.push(
self.generation_state.memory.contexts[self.context].segments
[Segment::ContextMetadata as usize]
.get(ContextMetadata::MSize as usize),
)
}
fn run_jumpdest(&mut self) {
assert!(!self.kernel_mode, "JUMPDEST is not needed in kernel code");
}
fn jump_to(&mut self, offset: usize) {
// The JUMPDEST rule is not enforced in kernel mode.
if !self.kernel_mode && self.jumpdests.binary_search(&offset).is_err() {
panic!("Destination is not a JUMPDEST.");
}
self.generation_state.registers.program_counter = offset;
if self.halt_offsets.contains(&offset) {
self.running = false;
}
}
fn run_push(&mut self, num_bytes: u8) {
let x = U256::from_big_endian(&self.code_slice(num_bytes as usize));
self.incr(num_bytes as usize);
self.push(x);
}
fn run_dup(&mut self, n: u8) {
self.push(self.stack()[self.stack_len() - n as usize]);
}
fn run_swap(&mut self, n: u8) -> anyhow::Result<()> {
let len = self.stack_len();
ensure!(len > n as usize);
self.stack_mut().swap(len - 1, len - n as usize - 1);
Ok(())
}
fn run_get_context(&mut self) {
self.push(self.context.into());
}
fn run_set_context(&mut self) {
let x = self.pop();
self.context = x.as_usize();
}
fn run_mload_general(&mut self) {
let context = self.pop().as_usize();
let segment = Segment::all()[self.pop().as_usize()];
let offset = self.pop().as_usize();
let value = self
.generation_state
.memory
.mload_general(context, segment, offset);
assert!(value.bits() <= segment.bit_range());
self.push(value);
}
fn run_mstore_general(&mut self) {
let context = self.pop().as_usize();
let segment = Segment::all()[self.pop().as_usize()];
let offset = self.pop().as_usize();
let value = self.pop();
self.generation_state
.memory
.mstore_general(context, segment, offset, value);
}
fn stack_len(&self) -> usize {
self.generation_state.registers.stack_len
}
}
/// Return the (ordered) JUMPDEST offsets in the code.
fn find_jumpdests(code: &[u8]) -> Vec<usize> {
let mut offset = 0;
let mut res = Vec::new();
while offset < code.len() {
let opcode = code[offset];
match opcode {
0x5b => res.push(offset),
x if (0x60..0x80).contains(&x) => offset += x as usize - 0x5f, // PUSH instruction, disregard data.
_ => (),
}
offset += 1;
}
res
}
fn get_mnemonic(opcode: u8) -> &'static str {
match opcode {
0x00 => "STOP",
0x01 => "ADD",
0x02 => "MUL",
0x03 => "SUB",
0x04 => "DIV",
0x05 => "SDIV",
0x06 => "MOD",
0x07 => "SMOD",
0x08 => "ADDMOD",
0x09 => "MULMOD",
0x0a => "EXP",
0x0b => "SIGNEXTEND",
0x0c => "ADDFP254",
0x0d => "MULFP254",
0x0e => "SUBFP254",
0x10 => "LT",
0x11 => "GT",
0x12 => "SLT",
0x13 => "SGT",
0x14 => "EQ",
0x15 => "ISZERO",
0x16 => "AND",
0x17 => "OR",
0x18 => "XOR",
0x19 => "NOT",
0x1a => "BYTE",
0x1b => "SHL",
0x1c => "SHR",
0x1d => "SAR",
0x20 => "KECCAK256",
0x21 => "KECCAK_GENERAL",
0x30 => "ADDRESS",
0x31 => "BALANCE",
0x32 => "ORIGIN",
0x33 => "CALLER",
0x34 => "CALLVALUE",
0x35 => "CALLDATALOAD",
0x36 => "CALLDATASIZE",
0x37 => "CALLDATACOPY",
0x38 => "CODESIZE",
0x39 => "CODECOPY",
0x3a => "GASPRICE",
0x3b => "EXTCODESIZE",
0x3c => "EXTCODECOPY",
0x3d => "RETURNDATASIZE",
0x3e => "RETURNDATACOPY",
0x3f => "EXTCODEHASH",
0x40 => "BLOCKHASH",
0x41 => "COINBASE",
0x42 => "TIMESTAMP",
0x43 => "NUMBER",
0x44 => "DIFFICULTY",
0x45 => "GASLIMIT",
0x46 => "CHAINID",
0x48 => "BASEFEE",
0x49 => "PROVER_INPUT",
0x50 => "POP",
0x51 => "MLOAD",
0x52 => "MSTORE",
0x53 => "MSTORE8",
0x54 => "SLOAD",
0x55 => "SSTORE",
0x56 => "JUMP",
0x57 => "JUMPI",
0x58 => "GETPC",
0x59 => "MSIZE",
0x5a => "GAS",
0x5b => "JUMPDEST",
0x60 => "PUSH1",
0x61 => "PUSH2",
0x62 => "PUSH3",
0x63 => "PUSH4",
0x64 => "PUSH5",
0x65 => "PUSH6",
0x66 => "PUSH7",
0x67 => "PUSH8",
0x68 => "PUSH9",
0x69 => "PUSH10",
0x6a => "PUSH11",
0x6b => "PUSH12",
0x6c => "PUSH13",
0x6d => "PUSH14",
0x6e => "PUSH15",
0x6f => "PUSH16",
0x70 => "PUSH17",
0x71 => "PUSH18",
0x72 => "PUSH19",
0x73 => "PUSH20",
0x74 => "PUSH21",
0x75 => "PUSH22",
0x76 => "PUSH23",
0x77 => "PUSH24",
0x78 => "PUSH25",
0x79 => "PUSH26",
0x7a => "PUSH27",
0x7b => "PUSH28",
0x7c => "PUSH29",
0x7d => "PUSH30",
0x7e => "PUSH31",
0x7f => "PUSH32",
0x80 => "DUP1",
0x81 => "DUP2",
0x82 => "DUP3",
0x83 => "DUP4",
0x84 => "DUP5",
0x85 => "DUP6",
0x86 => "DUP7",
0x87 => "DUP8",
0x88 => "DUP9",
0x89 => "DUP10",
0x8a => "DUP11",
0x8b => "DUP12",
0x8c => "DUP13",
0x8d => "DUP14",
0x8e => "DUP15",
0x8f => "DUP16",
0x90 => "SWAP1",
0x91 => "SWAP2",
0x92 => "SWAP3",
0x93 => "SWAP4",
0x94 => "SWAP5",
0x95 => "SWAP6",
0x96 => "SWAP7",
0x97 => "SWAP8",
0x98 => "SWAP9",
0x99 => "SWAP10",
0x9a => "SWAP11",
0x9b => "SWAP12",
0x9c => "SWAP13",
0x9d => "SWAP14",
0x9e => "SWAP15",
0x9f => "SWAP16",
0xa0 => "LOG0",
0xa1 => "LOG1",
0xa2 => "LOG2",
0xa3 => "LOG3",
0xa4 => "LOG4",
0xa5 => "PANIC",
0xf0 => "CREATE",
0xf1 => "CALL",
0xf2 => "CALLCODE",
0xf3 => "RETURN",
0xf4 => "DELEGATECALL",
0xf5 => "CREATE2",
0xf6 => "GET_CONTEXT",
0xf7 => "SET_CONTEXT",
0xf8 => "CONSUME_GAS",
0xf9 => "EXIT_KERNEL",
0xfa => "STATICCALL",
0xfb => "MLOAD_GENERAL",
0xfc => "MSTORE_GENERAL",
0xfd => "REVERT",
0xfe => "INVALID",
0xff => "SELFDESTRUCT",
_ => panic!("Unrecognized opcode {opcode}"),
}
}
#[cfg(test)]
mod tests {
use std::collections::HashMap;
use crate::cpu::kernel::interpreter::run;
use crate::memory::segments::Segment;
#[test]
fn test_run() -> anyhow::Result<()> {
let code = vec![
0x60, 0x1, 0x60, 0x2, 0x1, 0x63, 0xde, 0xad, 0xbe, 0xef, 0x56,
]; // PUSH1, 1, PUSH1, 2, ADD, PUSH4 deadbeef, JUMP
assert_eq!(
run(&code, 0, vec![], &HashMap::new())?.stack(),
&[0x3.into()],
);
Ok(())
}
#[test]
fn test_run_with_memory() -> anyhow::Result<()> {
// PUSH1 0xff
// PUSH1 0
// MSTORE
// PUSH1 0
// MLOAD
// PUSH1 1
// MLOAD
// PUSH1 0x42
// PUSH1 0x27
// MSTORE8
let code = vec![
0x60, 0xff, 0x60, 0x0, 0x52, 0x60, 0, 0x51, 0x60, 0x1, 0x51, 0x60, 0x42, 0x60, 0x27,
0x53,
];
let pis = HashMap::new();
let run = run(&code, 0, vec![], &pis)?;
assert_eq!(run.stack(), &[0xff.into(), 0xff00.into()]);
assert_eq!(
run.generation_state.memory.contexts[0].segments[Segment::MainMemory as usize]
.get(0x27),
0x42.into()
);
assert_eq!(
run.generation_state.memory.contexts[0].segments[Segment::MainMemory as usize]
.get(0x1f),
0xff.into()
);
Ok(())
}
}