plonky2/system_zero/src/alu/division.rs
Daniel Lubarov e73d01a037
packed_field -> packed (#584)
* `packed_field` -> `packed`

For cleaner imports; "field" is usually clear from context

* fix
2022-06-27 15:07:52 -07:00

222 lines
8.5 KiB
Rust

use plonky2::field::extension::Extendable;
use plonky2::field::packed::PackedField;
use plonky2::field::types::{Field, PrimeField64};
use plonky2::hash::hash_types::RichField;
use plonky2::iop::ext_target::ExtensionTarget;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use starky::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::registers::alu::*;
use crate::registers::NUM_COLUMNS;
/// Division instruction of a u32 divisor N into a u32 dividend D,
/// with u32 quotient Q and u32 remainder R. If D is not zero, then
/// the values will satisfy N = Q*D + R with 0 <= R < D. If D is
/// zero, then the remainder is set to the special value u32::MAX =
/// 2^32 - 1 (which is not a valid remainder for any nonzero D) and
/// the quotient is set to zero. In particular, no overflow is
/// possible.
pub(crate) fn generate_division<F: PrimeField64>(values: &mut [F; NUM_COLUMNS]) {
let dividend = values[COL_DIV_INPUT_DIVIDEND].to_canonical_u64() as u32;
let divisor = values[COL_DIV_INPUT_DIVISOR].to_canonical_u64() as u32;
// `COL_DIV_INVDIVISOR` is `divisor^-1` if `divisor != 0` and `0` otherwise.
// `COL_DIV_NONZERO_DIVISOR` is `1` if `divisor != 0` and `0` otherwise.
// `COL_DIV_RANGE_CHECKED_TMP` is set to `divisor - rem - 1` if `divisor != 0` and `0`
// otherwise. This is used to ensure that `rem < divisor` when `divisor != 0`.
if divisor == 0 {
// Outputs
values[COL_DIV_OUTPUT_QUOT_0] = F::ZERO;
values[COL_DIV_OUTPUT_QUOT_1] = F::ZERO;
values[COL_DIV_OUTPUT_REM_0] = F::from_canonical_u16(u16::MAX);
values[COL_DIV_OUTPUT_REM_1] = F::from_canonical_u16(u16::MAX);
// Temporaries
values[COL_DIV_RANGE_CHECKED_TMP_0] = F::ZERO;
values[COL_DIV_RANGE_CHECKED_TMP_1] = F::ZERO;
values[COL_DIV_INVDIVISOR] = F::ZERO;
values[COL_DIV_NONZERO_DIVISOR] = F::ZERO;
} else {
let quo = dividend / divisor;
let rem = dividend % divisor;
let div_rem_diff_m1 = divisor - rem - 1;
// Outputs
values[COL_DIV_OUTPUT_QUOT_0] = F::from_canonical_u16(quo as u16);
values[COL_DIV_OUTPUT_QUOT_1] = F::from_canonical_u16((quo >> 16) as u16);
values[COL_DIV_OUTPUT_REM_0] = F::from_canonical_u16(rem as u16);
values[COL_DIV_OUTPUT_REM_1] = F::from_canonical_u16((rem >> 16) as u16);
// Temporaries
values[COL_DIV_RANGE_CHECKED_TMP_0] = F::from_canonical_u16(div_rem_diff_m1 as u16);
values[COL_DIV_RANGE_CHECKED_TMP_1] = F::from_canonical_u16((div_rem_diff_m1 >> 16) as u16);
values[COL_DIV_INVDIVISOR] = F::from_canonical_u32(divisor).inverse();
values[COL_DIV_NONZERO_DIVISOR] = F::ONE;
}
}
pub(crate) fn eval_division<F: Field, P: PackedField<Scalar = F>>(
lv: &[P; NUM_COLUMNS],
yield_constr: &mut ConstraintConsumer<P>,
) {
let base = F::from_canonical_u64(1 << 16);
let u32_max = P::from(F::from_canonical_u32(u32::MAX));
// Filter
let is_div = lv[IS_DIV];
// Inputs
let dividend = lv[COL_DIV_INPUT_DIVIDEND];
let divisor = lv[COL_DIV_INPUT_DIVISOR];
// Outputs
let quotient = lv[COL_DIV_OUTPUT_QUOT_0] + lv[COL_DIV_OUTPUT_QUOT_1] * base;
let remainder = lv[COL_DIV_OUTPUT_REM_0] + lv[COL_DIV_OUTPUT_REM_1] * base;
// Temporaries
let divinv = lv[COL_DIV_INVDIVISOR];
let div_divinv = lv[COL_DIV_NONZERO_DIVISOR];
let div_rem_diff_m1 = lv[COL_DIV_RANGE_CHECKED_TMP_0] + lv[COL_DIV_RANGE_CHECKED_TMP_1] * base;
// Constraints
yield_constr.constraint(is_div * (divisor * divinv - div_divinv));
yield_constr.constraint(is_div * (div_divinv - F::ONE) * (remainder - quotient - u32_max));
yield_constr.constraint(is_div * divisor * (div_divinv - F::ONE));
yield_constr.constraint(is_div * (quotient + remainder * divinv - divinv * dividend));
yield_constr.constraint(is_div * divisor * (divisor - remainder - F::ONE - div_rem_diff_m1));
}
pub(crate) fn eval_division_circuit<F: RichField + Extendable<D>, const D: usize>(
builder: &mut CircuitBuilder<F, D>,
lv: &[ExtensionTarget<D>; NUM_COLUMNS],
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
) {
let base = builder.constant_extension(F::Extension::from_canonical_u64(1 << 16));
let u32_max = builder.constant_extension(F::Extension::from_canonical_u32(u32::MAX));
let one = builder.constant_extension(F::Extension::ONE);
// Filter
let is_div = lv[IS_DIV];
// Inputs
let dividend = lv[COL_DIV_INPUT_DIVIDEND];
let divisor = lv[COL_DIV_INPUT_DIVISOR];
// Outputs
let quotient =
builder.mul_add_extension(lv[COL_DIV_OUTPUT_QUOT_1], base, lv[COL_DIV_OUTPUT_QUOT_0]);
let remainder =
builder.mul_add_extension(lv[COL_DIV_OUTPUT_REM_1], base, lv[COL_DIV_OUTPUT_REM_0]);
// Temporaries
let divinv = lv[COL_DIV_INVDIVISOR];
let div_divinv = lv[COL_DIV_NONZERO_DIVISOR];
let div_rem_diff_m1 = builder.mul_add_extension(
lv[COL_DIV_RANGE_CHECKED_TMP_1],
base,
lv[COL_DIV_RANGE_CHECKED_TMP_0],
);
// Constraints
let constr6 = builder.mul_sub_extension(divisor, divinv, div_divinv);
let constr7 = {
let t = builder.sub_extension(div_divinv, one);
let u = builder.sub_extension(remainder, quotient);
let v = builder.sub_extension(u, u32_max);
builder.mul_extension(t, v)
};
let constr8 = {
let t = builder.sub_extension(div_divinv, one);
builder.mul_extension(divisor, t)
};
let constr9 = {
let t = builder.sub_extension(remainder, dividend);
builder.mul_add_extension(t, divinv, quotient)
};
let constr10 = {
let t = builder.sub_extension(divisor, remainder);
let u = builder.add_extension(one, div_rem_diff_m1);
let v = builder.sub_extension(t, u);
builder.mul_extension(divisor, v)
};
let constr6 = builder.mul_extension(is_div, constr6);
let constr7 = builder.mul_extension(is_div, constr7);
let constr8 = builder.mul_extension(is_div, constr8);
let constr9 = builder.mul_extension(is_div, constr9);
let constr10 = builder.mul_extension(is_div, constr10);
yield_constr.constraint(builder, constr6);
yield_constr.constraint(builder, constr7);
yield_constr.constraint(builder, constr8);
yield_constr.constraint(builder, constr9);
yield_constr.constraint(builder, constr10);
}
#[cfg(test)]
mod tests {
use plonky2::field::goldilocks_field::GoldilocksField;
use plonky2::field::types::Field;
use rand::{Rng, SeedableRng};
use rand_chacha::ChaCha8Rng;
use starky::constraint_consumer::ConstraintConsumer;
use super::*;
use crate::registers::NUM_COLUMNS;
#[test]
fn generate_eval_consistency_not_div() {
type F = GoldilocksField;
let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25);
let mut values = [F::default(); NUM_COLUMNS].map(|_| F::rand_from_rng(&mut rng));
// if `IS_DIV == 0`, then the constraints should be met even if all values are garbage.
values[IS_DIV] = F::ZERO;
let mut constrant_consumer = ConstraintConsumer::new(
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
GoldilocksField::ONE,
GoldilocksField::ONE,
GoldilocksField::ONE,
);
eval_division(&values, &mut constrant_consumer);
for &acc in &constrant_consumer.constraint_accs {
assert_eq!(acc, GoldilocksField::ZERO);
}
}
#[test]
fn generate_eval_consistency_div() {
type F = GoldilocksField;
let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25);
let mut values = [F::default(); NUM_COLUMNS].map(|_| F::rand_from_rng(&mut rng));
// set `IS_DIV == 1` and ensure all constraints are satisfied.
values[IS_DIV] = F::ONE;
// set `DIVIDEND` and `DIVISOR` to `u32`s
values[COL_DIV_INPUT_DIVIDEND] = F::from_canonical_u32(rng.gen::<u32>());
values[COL_DIV_INPUT_DIVISOR] = F::from_canonical_u32(rng.gen::<u32>());
generate_division(&mut values);
let mut constrant_consumer = ConstraintConsumer::new(
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
GoldilocksField::ONE,
GoldilocksField::ONE,
GoldilocksField::ONE,
);
eval_division(&values, &mut constrant_consumer);
for &acc in &constrant_consumer.constraint_accs {
assert_eq!(acc, GoldilocksField::ZERO);
}
}
// TODO: test eval_division_recursively.
}