mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-05 07:13:08 +00:00
666 lines
20 KiB
Rust
666 lines
20 KiB
Rust
pub(crate) mod division;
|
|
|
|
use std::cmp::max;
|
|
use std::iter::Sum;
|
|
use std::ops::{Add, AddAssign, Mul, MulAssign, Sub, SubAssign};
|
|
|
|
use anyhow::{ensure, Result};
|
|
use itertools::Itertools;
|
|
use plonky2_util::log2_strict;
|
|
use serde::{Deserialize, Serialize};
|
|
|
|
use crate::extension::{Extendable, FieldExtension};
|
|
use crate::fft::{fft, fft_with_options, ifft, FftRootTable};
|
|
use crate::types::Field;
|
|
|
|
/// A polynomial in point-value form.
|
|
///
|
|
/// The points are implicitly `g^i`, where `g` generates the subgroup whose size equals the number
|
|
/// of points.
|
|
#[derive(Clone, Debug, Eq, PartialEq)]
|
|
pub struct PolynomialValues<F: Field> {
|
|
pub values: Vec<F>,
|
|
}
|
|
|
|
impl<F: Field> PolynomialValues<F> {
|
|
pub fn new(values: Vec<F>) -> Self {
|
|
// Check that a subgroup exists of this size, which should be a power of two.
|
|
debug_assert!(log2_strict(values.len()) <= F::TWO_ADICITY);
|
|
PolynomialValues { values }
|
|
}
|
|
|
|
pub fn constant(value: F, len: usize) -> Self {
|
|
Self::new(vec![value; len])
|
|
}
|
|
|
|
pub fn zero(len: usize) -> Self {
|
|
Self::constant(F::ZERO, len)
|
|
}
|
|
|
|
pub fn is_zero(&self) -> bool {
|
|
self.values.iter().all(|x| x.is_zero())
|
|
}
|
|
|
|
/// Returns the polynomial whole value is one at the given index, and zero elsewhere.
|
|
pub fn selector(len: usize, index: usize) -> Self {
|
|
let mut result = Self::zero(len);
|
|
result.values[index] = F::ONE;
|
|
result
|
|
}
|
|
|
|
/// The number of values stored.
|
|
pub fn len(&self) -> usize {
|
|
self.values.len()
|
|
}
|
|
|
|
pub fn ifft(self) -> PolynomialCoeffs<F> {
|
|
ifft(self)
|
|
}
|
|
|
|
/// Returns the polynomial whose evaluation on the coset `shift*H` is `self`.
|
|
pub fn coset_ifft(self, shift: F) -> PolynomialCoeffs<F> {
|
|
let mut shifted_coeffs = self.ifft();
|
|
shifted_coeffs
|
|
.coeffs
|
|
.iter_mut()
|
|
.zip(shift.inverse().powers())
|
|
.for_each(|(c, r)| {
|
|
*c *= r;
|
|
});
|
|
shifted_coeffs
|
|
}
|
|
|
|
pub fn lde_multiple(polys: Vec<Self>, rate_bits: usize) -> Vec<Self> {
|
|
polys.into_iter().map(|p| p.lde(rate_bits)).collect()
|
|
}
|
|
|
|
pub fn lde(self, rate_bits: usize) -> Self {
|
|
let coeffs = ifft(self).lde(rate_bits);
|
|
fft_with_options(coeffs, Some(rate_bits), None)
|
|
}
|
|
|
|
/// Low-degree extend `Self` (seen as evaluations over the subgroup) onto a coset.
|
|
pub fn lde_onto_coset(self, rate_bits: usize) -> Self {
|
|
let coeffs = ifft(self).lde(rate_bits);
|
|
coeffs.coset_fft_with_options(F::coset_shift(), Some(rate_bits), None)
|
|
}
|
|
|
|
pub fn degree(&self) -> usize {
|
|
self.degree_plus_one()
|
|
.checked_sub(1)
|
|
.expect("deg(0) is undefined")
|
|
}
|
|
|
|
pub fn degree_plus_one(&self) -> usize {
|
|
self.clone().ifft().degree_plus_one()
|
|
}
|
|
|
|
/// Adds `rhs * rhs_weight` to `self`. Assumes `self.len() == rhs.len()`.
|
|
pub fn add_assign_scaled(&mut self, rhs: &Self, rhs_weight: F) {
|
|
self.values
|
|
.iter_mut()
|
|
.zip_eq(&rhs.values)
|
|
.for_each(|(self_v, rhs_v)| *self_v += *rhs_v * rhs_weight)
|
|
}
|
|
}
|
|
|
|
impl<F: Field> From<Vec<F>> for PolynomialValues<F> {
|
|
fn from(values: Vec<F>) -> Self {
|
|
Self::new(values)
|
|
}
|
|
}
|
|
|
|
/// A polynomial in coefficient form.
|
|
#[derive(Clone, Debug, Serialize, Deserialize)]
|
|
#[serde(bound = "")]
|
|
pub struct PolynomialCoeffs<F: Field> {
|
|
pub coeffs: Vec<F>,
|
|
}
|
|
|
|
impl<F: Field> PolynomialCoeffs<F> {
|
|
pub fn new(coeffs: Vec<F>) -> Self {
|
|
PolynomialCoeffs { coeffs }
|
|
}
|
|
|
|
/// The empty list of coefficients, which is the smallest encoding of the zero polynomial.
|
|
pub fn empty() -> Self {
|
|
Self::new(Vec::new())
|
|
}
|
|
|
|
pub fn zero(len: usize) -> Self {
|
|
Self::new(vec![F::ZERO; len])
|
|
}
|
|
|
|
pub fn is_zero(&self) -> bool {
|
|
self.coeffs.iter().all(|x| x.is_zero())
|
|
}
|
|
|
|
/// The number of coefficients. This does not filter out any zero coefficients, so it is not
|
|
/// necessarily related to the degree.
|
|
pub fn len(&self) -> usize {
|
|
self.coeffs.len()
|
|
}
|
|
|
|
pub fn log_len(&self) -> usize {
|
|
log2_strict(self.len())
|
|
}
|
|
|
|
pub fn chunks(&self, chunk_size: usize) -> Vec<Self> {
|
|
self.coeffs
|
|
.chunks(chunk_size)
|
|
.map(|chunk| PolynomialCoeffs::new(chunk.to_vec()))
|
|
.collect()
|
|
}
|
|
|
|
pub fn eval(&self, x: F) -> F {
|
|
self.coeffs
|
|
.iter()
|
|
.rev()
|
|
.fold(F::ZERO, |acc, &c| acc * x + c)
|
|
}
|
|
|
|
/// Evaluate the polynomial at a point given its powers. The first power is the point itself, not 1.
|
|
pub fn eval_with_powers(&self, powers: &[F]) -> F {
|
|
debug_assert_eq!(self.coeffs.len(), powers.len() + 1);
|
|
let acc = self.coeffs[0];
|
|
self.coeffs[1..]
|
|
.iter()
|
|
.zip(powers)
|
|
.fold(acc, |acc, (&x, &c)| acc + c * x)
|
|
}
|
|
|
|
pub fn eval_base<const D: usize>(&self, x: F::BaseField) -> F
|
|
where
|
|
F: FieldExtension<D>,
|
|
{
|
|
self.coeffs
|
|
.iter()
|
|
.rev()
|
|
.fold(F::ZERO, |acc, &c| acc.scalar_mul(x) + c)
|
|
}
|
|
|
|
/// Evaluate the polynomial at a point given its powers. The first power is the point itself, not 1.
|
|
pub fn eval_base_with_powers<const D: usize>(&self, powers: &[F::BaseField]) -> F
|
|
where
|
|
F: FieldExtension<D>,
|
|
{
|
|
debug_assert_eq!(self.coeffs.len(), powers.len() + 1);
|
|
let acc = self.coeffs[0];
|
|
self.coeffs[1..]
|
|
.iter()
|
|
.zip(powers)
|
|
.fold(acc, |acc, (&x, &c)| acc + x.scalar_mul(c))
|
|
}
|
|
|
|
pub fn lde_multiple(polys: Vec<&Self>, rate_bits: usize) -> Vec<Self> {
|
|
polys.into_iter().map(|p| p.lde(rate_bits)).collect()
|
|
}
|
|
|
|
pub fn lde(&self, rate_bits: usize) -> Self {
|
|
self.padded(self.len() << rate_bits)
|
|
}
|
|
|
|
pub fn pad(&mut self, new_len: usize) -> Result<()> {
|
|
ensure!(
|
|
new_len >= self.len(),
|
|
"Trying to pad a polynomial of length {} to a length of {}.",
|
|
self.len(),
|
|
new_len
|
|
);
|
|
self.coeffs.resize(new_len, F::ZERO);
|
|
Ok(())
|
|
}
|
|
|
|
pub fn padded(&self, new_len: usize) -> Self {
|
|
let mut poly = self.clone();
|
|
poly.pad(new_len).unwrap();
|
|
poly
|
|
}
|
|
|
|
/// Removes any leading zero coefficients.
|
|
pub fn trim(&mut self) {
|
|
self.coeffs.truncate(self.degree_plus_one());
|
|
}
|
|
|
|
/// Removes some leading zero coefficients, such that a desired length is reached. Fails if a
|
|
/// nonzero coefficient is encountered before then.
|
|
pub fn trim_to_len(&mut self, len: usize) -> Result<()> {
|
|
ensure!(self.len() >= len);
|
|
ensure!(self.coeffs[len..].iter().all(F::is_zero));
|
|
self.coeffs.truncate(len);
|
|
Ok(())
|
|
}
|
|
|
|
/// Removes any leading zero coefficients.
|
|
pub fn trimmed(&self) -> Self {
|
|
let coeffs = self.coeffs[..self.degree_plus_one()].to_vec();
|
|
Self { coeffs }
|
|
}
|
|
|
|
/// Degree of the polynomial + 1, or 0 for a polynomial with no non-zero coefficients.
|
|
pub fn degree_plus_one(&self) -> usize {
|
|
(0usize..self.len())
|
|
.rev()
|
|
.find(|&i| self.coeffs[i].is_nonzero())
|
|
.map_or(0, |i| i + 1)
|
|
}
|
|
|
|
/// Leading coefficient.
|
|
pub fn lead(&self) -> F {
|
|
self.coeffs
|
|
.iter()
|
|
.rev()
|
|
.find(|x| x.is_nonzero())
|
|
.map_or(F::ZERO, |x| *x)
|
|
}
|
|
|
|
/// Reverse the order of the coefficients, not taking into account the leading zero coefficients.
|
|
pub(crate) fn rev(&self) -> Self {
|
|
Self::new(self.trimmed().coeffs.into_iter().rev().collect())
|
|
}
|
|
|
|
pub fn fft(self) -> PolynomialValues<F> {
|
|
fft(self)
|
|
}
|
|
|
|
pub fn fft_with_options(
|
|
self,
|
|
zero_factor: Option<usize>,
|
|
root_table: Option<&FftRootTable<F>>,
|
|
) -> PolynomialValues<F> {
|
|
fft_with_options(self, zero_factor, root_table)
|
|
}
|
|
|
|
/// Returns the evaluation of the polynomial on the coset `shift*H`.
|
|
pub fn coset_fft(&self, shift: F) -> PolynomialValues<F> {
|
|
self.coset_fft_with_options(shift, None, None)
|
|
}
|
|
|
|
/// Returns the evaluation of the polynomial on the coset `shift*H`.
|
|
pub fn coset_fft_with_options(
|
|
&self,
|
|
shift: F,
|
|
zero_factor: Option<usize>,
|
|
root_table: Option<&FftRootTable<F>>,
|
|
) -> PolynomialValues<F> {
|
|
let modified_poly: Self = shift
|
|
.powers()
|
|
.zip(&self.coeffs)
|
|
.map(|(r, &c)| r * c)
|
|
.collect::<Vec<_>>()
|
|
.into();
|
|
modified_poly.fft_with_options(zero_factor, root_table)
|
|
}
|
|
|
|
pub fn to_extension<const D: usize>(&self) -> PolynomialCoeffs<F::Extension>
|
|
where
|
|
F: Extendable<D>,
|
|
{
|
|
PolynomialCoeffs::new(self.coeffs.iter().map(|&c| c.into()).collect())
|
|
}
|
|
|
|
pub fn mul_extension<const D: usize>(&self, rhs: F::Extension) -> PolynomialCoeffs<F::Extension>
|
|
where
|
|
F: Extendable<D>,
|
|
{
|
|
PolynomialCoeffs::new(self.coeffs.iter().map(|&c| rhs.scalar_mul(c)).collect())
|
|
}
|
|
}
|
|
|
|
impl<F: Field> PartialEq for PolynomialCoeffs<F> {
|
|
fn eq(&self, other: &Self) -> bool {
|
|
let max_terms = self.coeffs.len().max(other.coeffs.len());
|
|
for i in 0..max_terms {
|
|
let self_i = self.coeffs.get(i).cloned().unwrap_or(F::ZERO);
|
|
let other_i = other.coeffs.get(i).cloned().unwrap_or(F::ZERO);
|
|
if self_i != other_i {
|
|
return false;
|
|
}
|
|
}
|
|
true
|
|
}
|
|
}
|
|
|
|
impl<F: Field> Eq for PolynomialCoeffs<F> {}
|
|
|
|
impl<F: Field> From<Vec<F>> for PolynomialCoeffs<F> {
|
|
fn from(coeffs: Vec<F>) -> Self {
|
|
Self::new(coeffs)
|
|
}
|
|
}
|
|
|
|
impl<F: Field> Add for &PolynomialCoeffs<F> {
|
|
type Output = PolynomialCoeffs<F>;
|
|
|
|
fn add(self, rhs: Self) -> Self::Output {
|
|
let len = max(self.len(), rhs.len());
|
|
let a = self.padded(len).coeffs;
|
|
let b = rhs.padded(len).coeffs;
|
|
let coeffs = a.into_iter().zip(b).map(|(x, y)| x + y).collect();
|
|
PolynomialCoeffs::new(coeffs)
|
|
}
|
|
}
|
|
|
|
impl<F: Field> Sum for PolynomialCoeffs<F> {
|
|
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
|
|
iter.fold(Self::empty(), |acc, p| &acc + &p)
|
|
}
|
|
}
|
|
|
|
impl<F: Field> Sub for &PolynomialCoeffs<F> {
|
|
type Output = PolynomialCoeffs<F>;
|
|
|
|
fn sub(self, rhs: Self) -> Self::Output {
|
|
let len = max(self.len(), rhs.len());
|
|
let mut coeffs = self.padded(len).coeffs;
|
|
for (i, &c) in rhs.coeffs.iter().enumerate() {
|
|
coeffs[i] -= c;
|
|
}
|
|
PolynomialCoeffs::new(coeffs)
|
|
}
|
|
}
|
|
|
|
impl<F: Field> AddAssign for PolynomialCoeffs<F> {
|
|
fn add_assign(&mut self, rhs: Self) {
|
|
let len = max(self.len(), rhs.len());
|
|
self.coeffs.resize(len, F::ZERO);
|
|
for (l, r) in self.coeffs.iter_mut().zip(rhs.coeffs) {
|
|
*l += r;
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<F: Field> AddAssign<&Self> for PolynomialCoeffs<F> {
|
|
fn add_assign(&mut self, rhs: &Self) {
|
|
let len = max(self.len(), rhs.len());
|
|
self.coeffs.resize(len, F::ZERO);
|
|
for (l, &r) in self.coeffs.iter_mut().zip(&rhs.coeffs) {
|
|
*l += r;
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<F: Field> SubAssign for PolynomialCoeffs<F> {
|
|
fn sub_assign(&mut self, rhs: Self) {
|
|
let len = max(self.len(), rhs.len());
|
|
self.coeffs.resize(len, F::ZERO);
|
|
for (l, r) in self.coeffs.iter_mut().zip(rhs.coeffs) {
|
|
*l -= r;
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<F: Field> SubAssign<&Self> for PolynomialCoeffs<F> {
|
|
fn sub_assign(&mut self, rhs: &Self) {
|
|
let len = max(self.len(), rhs.len());
|
|
self.coeffs.resize(len, F::ZERO);
|
|
for (l, &r) in self.coeffs.iter_mut().zip(&rhs.coeffs) {
|
|
*l -= r;
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<F: Field> Mul<F> for &PolynomialCoeffs<F> {
|
|
type Output = PolynomialCoeffs<F>;
|
|
|
|
fn mul(self, rhs: F) -> Self::Output {
|
|
let coeffs = self.coeffs.iter().map(|&x| rhs * x).collect();
|
|
PolynomialCoeffs::new(coeffs)
|
|
}
|
|
}
|
|
|
|
impl<F: Field> MulAssign<F> for PolynomialCoeffs<F> {
|
|
fn mul_assign(&mut self, rhs: F) {
|
|
self.coeffs.iter_mut().for_each(|x| *x *= rhs);
|
|
}
|
|
}
|
|
|
|
impl<F: Field> Mul for &PolynomialCoeffs<F> {
|
|
type Output = PolynomialCoeffs<F>;
|
|
|
|
#[allow(clippy::suspicious_arithmetic_impl)]
|
|
fn mul(self, rhs: Self) -> Self::Output {
|
|
let new_len = (self.len() + rhs.len()).next_power_of_two();
|
|
let a = self.padded(new_len);
|
|
let b = rhs.padded(new_len);
|
|
let a_evals = a.fft();
|
|
let b_evals = b.fft();
|
|
|
|
let mul_evals: Vec<F> = a_evals
|
|
.values
|
|
.into_iter()
|
|
.zip(b_evals.values)
|
|
.map(|(pa, pb)| pa * pb)
|
|
.collect();
|
|
ifft(mul_evals.into())
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use std::time::Instant;
|
|
|
|
use rand::{thread_rng, Rng};
|
|
|
|
use super::*;
|
|
use crate::goldilocks_field::GoldilocksField;
|
|
|
|
#[test]
|
|
fn test_trimmed() {
|
|
type F = GoldilocksField;
|
|
|
|
assert_eq!(
|
|
PolynomialCoeffs::<F> { coeffs: vec![] }.trimmed(),
|
|
PolynomialCoeffs::<F> { coeffs: vec![] }
|
|
);
|
|
assert_eq!(
|
|
PolynomialCoeffs::<F> {
|
|
coeffs: vec![F::ZERO]
|
|
}
|
|
.trimmed(),
|
|
PolynomialCoeffs::<F> { coeffs: vec![] }
|
|
);
|
|
assert_eq!(
|
|
PolynomialCoeffs::<F> {
|
|
coeffs: vec![F::ONE, F::TWO, F::ZERO, F::ZERO]
|
|
}
|
|
.trimmed(),
|
|
PolynomialCoeffs::<F> {
|
|
coeffs: vec![F::ONE, F::TWO]
|
|
}
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_coset_fft() {
|
|
type F = GoldilocksField;
|
|
|
|
let k = 8;
|
|
let n = 1 << k;
|
|
let poly = PolynomialCoeffs::new(F::rand_vec(n));
|
|
let shift = F::rand();
|
|
let coset_evals = poly.coset_fft(shift).values;
|
|
|
|
let generator = F::primitive_root_of_unity(k);
|
|
let naive_coset_evals = F::cyclic_subgroup_coset_known_order(generator, shift, n)
|
|
.into_iter()
|
|
.map(|x| poly.eval(x))
|
|
.collect::<Vec<_>>();
|
|
assert_eq!(coset_evals, naive_coset_evals);
|
|
|
|
let ifft_coeffs = PolynomialValues::new(coset_evals).coset_ifft(shift);
|
|
assert_eq!(poly, ifft_coeffs);
|
|
}
|
|
|
|
#[test]
|
|
fn test_coset_ifft() {
|
|
type F = GoldilocksField;
|
|
|
|
let k = 8;
|
|
let n = 1 << k;
|
|
let evals = PolynomialValues::new(F::rand_vec(n));
|
|
let shift = F::rand();
|
|
let coeffs = evals.clone().coset_ifft(shift);
|
|
|
|
let generator = F::primitive_root_of_unity(k);
|
|
let naive_coset_evals = F::cyclic_subgroup_coset_known_order(generator, shift, n)
|
|
.into_iter()
|
|
.map(|x| coeffs.eval(x))
|
|
.collect::<Vec<_>>();
|
|
assert_eq!(evals, naive_coset_evals.into());
|
|
|
|
let fft_evals = coeffs.coset_fft(shift);
|
|
assert_eq!(evals, fft_evals);
|
|
}
|
|
|
|
#[test]
|
|
fn test_polynomial_multiplication() {
|
|
type F = GoldilocksField;
|
|
let mut rng = thread_rng();
|
|
let (a_deg, b_deg) = (rng.gen_range(1..10_000), rng.gen_range(1..10_000));
|
|
let a = PolynomialCoeffs::new(F::rand_vec(a_deg));
|
|
let b = PolynomialCoeffs::new(F::rand_vec(b_deg));
|
|
let m1 = &a * &b;
|
|
let m2 = &a * &b;
|
|
for _ in 0..1000 {
|
|
let x = F::rand();
|
|
assert_eq!(m1.eval(x), a.eval(x) * b.eval(x));
|
|
assert_eq!(m2.eval(x), a.eval(x) * b.eval(x));
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_inv_mod_xn() {
|
|
type F = GoldilocksField;
|
|
let mut rng = thread_rng();
|
|
let a_deg = rng.gen_range(0..1_000);
|
|
let n = rng.gen_range(1..1_000);
|
|
let mut a = PolynomialCoeffs::new(F::rand_vec(a_deg + 1));
|
|
if a.coeffs[0].is_zero() {
|
|
a.coeffs[0] = F::ONE; // First coefficient needs to be nonzero.
|
|
}
|
|
let b = a.inv_mod_xn(n);
|
|
let mut m = &a * &b;
|
|
m.coeffs.truncate(n);
|
|
m.trim();
|
|
assert_eq!(
|
|
m,
|
|
PolynomialCoeffs::new(vec![F::ONE]),
|
|
"a: {:#?}, b:{:#?}, n:{:#?}, m:{:#?}",
|
|
a,
|
|
b,
|
|
n,
|
|
m
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_polynomial_long_division() {
|
|
type F = GoldilocksField;
|
|
let mut rng = thread_rng();
|
|
let (a_deg, b_deg) = (rng.gen_range(1..10_000), rng.gen_range(1..10_000));
|
|
let a = PolynomialCoeffs::new(F::rand_vec(a_deg));
|
|
let b = PolynomialCoeffs::new(F::rand_vec(b_deg));
|
|
let (q, r) = a.div_rem_long_division(&b);
|
|
for _ in 0..1000 {
|
|
let x = F::rand();
|
|
assert_eq!(a.eval(x), b.eval(x) * q.eval(x) + r.eval(x));
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_polynomial_division() {
|
|
type F = GoldilocksField;
|
|
let mut rng = thread_rng();
|
|
let (a_deg, b_deg) = (rng.gen_range(1..10_000), rng.gen_range(1..10_000));
|
|
let a = PolynomialCoeffs::new(F::rand_vec(a_deg));
|
|
let b = PolynomialCoeffs::new(F::rand_vec(b_deg));
|
|
let (q, r) = a.div_rem(&b);
|
|
for _ in 0..1000 {
|
|
let x = F::rand();
|
|
assert_eq!(a.eval(x), b.eval(x) * q.eval(x) + r.eval(x));
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_polynomial_division_by_constant() {
|
|
type F = GoldilocksField;
|
|
let mut rng = thread_rng();
|
|
let a_deg = rng.gen_range(1..10_000);
|
|
let a = PolynomialCoeffs::new(F::rand_vec(a_deg));
|
|
let b = PolynomialCoeffs::from(vec![F::rand()]);
|
|
let (q, r) = a.div_rem(&b);
|
|
for _ in 0..1000 {
|
|
let x = F::rand();
|
|
assert_eq!(a.eval(x), b.eval(x) * q.eval(x) + r.eval(x));
|
|
}
|
|
}
|
|
|
|
// Test to see which polynomial division method is faster for divisions of the type
|
|
// `(X^n - 1)/(X - a)
|
|
#[test]
|
|
fn test_division_linear() {
|
|
type F = GoldilocksField;
|
|
let mut rng = thread_rng();
|
|
let l = 14;
|
|
let n = 1 << l;
|
|
let g = F::primitive_root_of_unity(l);
|
|
let xn_minus_one = {
|
|
let mut xn_min_one_vec = vec![F::ZERO; n + 1];
|
|
xn_min_one_vec[n] = F::ONE;
|
|
xn_min_one_vec[0] = F::NEG_ONE;
|
|
PolynomialCoeffs::new(xn_min_one_vec)
|
|
};
|
|
|
|
let a = g.exp_u64(rng.gen_range(0..(n as u64)));
|
|
let denom = PolynomialCoeffs::new(vec![-a, F::ONE]);
|
|
let now = Instant::now();
|
|
xn_minus_one.div_rem(&denom);
|
|
println!("Division time: {:?}", now.elapsed());
|
|
let now = Instant::now();
|
|
xn_minus_one.div_rem_long_division(&denom);
|
|
println!("Division time: {:?}", now.elapsed());
|
|
}
|
|
|
|
#[test]
|
|
fn eq() {
|
|
type F = GoldilocksField;
|
|
assert_eq!(
|
|
PolynomialCoeffs::<F>::new(vec![]),
|
|
PolynomialCoeffs::new(vec![])
|
|
);
|
|
assert_eq!(
|
|
PolynomialCoeffs::<F>::new(vec![F::ZERO]),
|
|
PolynomialCoeffs::new(vec![F::ZERO])
|
|
);
|
|
assert_eq!(
|
|
PolynomialCoeffs::<F>::new(vec![]),
|
|
PolynomialCoeffs::new(vec![F::ZERO])
|
|
);
|
|
assert_eq!(
|
|
PolynomialCoeffs::<F>::new(vec![F::ZERO]),
|
|
PolynomialCoeffs::new(vec![])
|
|
);
|
|
assert_eq!(
|
|
PolynomialCoeffs::<F>::new(vec![F::ZERO]),
|
|
PolynomialCoeffs::new(vec![F::ZERO, F::ZERO])
|
|
);
|
|
assert_eq!(
|
|
PolynomialCoeffs::<F>::new(vec![F::ONE]),
|
|
PolynomialCoeffs::new(vec![F::ONE, F::ZERO])
|
|
);
|
|
assert_ne!(
|
|
PolynomialCoeffs::<F>::new(vec![]),
|
|
PolynomialCoeffs::new(vec![F::ONE])
|
|
);
|
|
assert_ne!(
|
|
PolynomialCoeffs::<F>::new(vec![F::ZERO]),
|
|
PolynomialCoeffs::new(vec![F::ZERO, F::ONE])
|
|
);
|
|
assert_ne!(
|
|
PolynomialCoeffs::<F>::new(vec![F::ZERO]),
|
|
PolynomialCoeffs::new(vec![F::ONE, F::ZERO])
|
|
);
|
|
}
|
|
}
|