Nicholas Ward 45c0d894d1 cleanup
2023-04-22 17:52:32 -07:00

299 lines
10 KiB
Rust

use alloc::string::String;
use alloc::sync::Arc;
use alloc::vec;
use alloc::vec::Vec;
use core::any::Any;
use core::fmt::{Debug, Error, Formatter};
use core::hash::{Hash, Hasher};
use core::ops::Range;
use hashbrown::HashMap;
use serde::{Serialize, Serializer};
use crate::field::batch_util::batch_multiply_inplace;
use crate::field::extension::{Extendable, FieldExtension};
use crate::field::types::Field;
use crate::gates::selectors::UNUSED_SELECTOR;
use crate::gates::util::StridedConstraintConsumer;
use crate::hash::hash_types::RichField;
use crate::iop::ext_target::ExtensionTarget;
use crate::iop::generator::WitnessGeneratorRef;
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::vars::{
EvaluationTargets, EvaluationVars, EvaluationVarsBase, EvaluationVarsBaseBatch,
};
use crate::util::serialization::{Buffer, IoResult};
/// A custom gate.
pub trait Gate<F: RichField + Extendable<D>, const D: usize>: 'static + Send + Sync {
fn id(&self) -> String;
fn serialize(&self, dst: &mut Vec<u8>) -> IoResult<()>;
fn deserialize(src: &mut Buffer) -> IoResult<Self>
where
Self: Sized;
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension>;
/// Like `eval_unfiltered`, but specialized for points in the base field.
///
///
/// `eval_unfiltered_base_batch` calls this method by default. If `eval_unfiltered_base_batch`
/// is overridden, then `eval_unfiltered_base_one` is not necessary.
///
/// By default, this just calls `eval_unfiltered`, which treats the point as an extension field
/// element. This isn't very efficient.
fn eval_unfiltered_base_one(
&self,
vars_base: EvaluationVarsBase<F>,
mut yield_constr: StridedConstraintConsumer<F>,
) {
// Note that this method uses `yield_constr` instead of returning its constraints.
// `yield_constr` abstracts out the underlying memory layout.
let local_constants = &vars_base
.local_constants
.iter()
.map(|c| F::Extension::from_basefield(*c))
.collect::<Vec<_>>();
let local_wires = &vars_base
.local_wires
.iter()
.map(|w| F::Extension::from_basefield(*w))
.collect::<Vec<_>>();
let public_inputs_hash = &vars_base.public_inputs_hash;
let vars = EvaluationVars {
local_constants,
local_wires,
public_inputs_hash,
};
let values = self.eval_unfiltered(vars);
// Each value should be in the base field, i.e. only the degree-zero part should be nonzero.
values.into_iter().for_each(|value| {
debug_assert!(F::Extension::is_in_basefield(&value));
yield_constr.one(value.to_basefield_array()[0])
})
}
fn eval_unfiltered_base_batch(&self, vars_base: EvaluationVarsBaseBatch<F>) -> Vec<F> {
let mut res = vec![F::ZERO; vars_base.len() * self.num_constraints()];
for (i, vars_base_one) in vars_base.iter().enumerate() {
self.eval_unfiltered_base_one(
vars_base_one,
StridedConstraintConsumer::new(&mut res, vars_base.len(), i),
);
}
res
}
fn eval_unfiltered_circuit(
&self,
builder: &mut CircuitBuilder<F, D>,
vars: EvaluationTargets<D>,
) -> Vec<ExtensionTarget<D>>;
fn eval_filtered(
&self,
mut vars: EvaluationVars<F, D>,
row: usize,
selector_index: usize,
group_range: Range<usize>,
num_selectors: usize,
) -> Vec<F::Extension> {
let filter = compute_filter(
row,
group_range,
vars.local_constants[selector_index],
num_selectors > 1,
);
vars.remove_prefix(num_selectors);
self.eval_unfiltered(vars)
.into_iter()
.map(|c| filter * c)
.collect()
}
/// The result is an array of length `vars_batch.len() * self.num_constraints()`. Constraint `j`
/// for point `i` is at index `j * batch_size + i`.
fn eval_filtered_base_batch(
&self,
mut vars_batch: EvaluationVarsBaseBatch<F>,
row: usize,
selector_index: usize,
group_range: Range<usize>,
num_selectors: usize,
) -> Vec<F> {
let filters: Vec<_> = vars_batch
.iter()
.map(|vars| {
compute_filter(
row,
group_range.clone(),
vars.local_constants[selector_index],
num_selectors > 1,
)
})
.collect();
vars_batch.remove_prefix(num_selectors);
let mut res_batch = self.eval_unfiltered_base_batch(vars_batch);
for res_chunk in res_batch.chunks_exact_mut(filters.len()) {
batch_multiply_inplace(res_chunk, &filters);
}
res_batch
}
/// Adds this gate's filtered constraints into the `combined_gate_constraints` buffer.
fn eval_filtered_circuit(
&self,
builder: &mut CircuitBuilder<F, D>,
mut vars: EvaluationTargets<D>,
row: usize,
selector_index: usize,
group_range: Range<usize>,
num_selectors: usize,
combined_gate_constraints: &mut [ExtensionTarget<D>],
) {
let filter = compute_filter_circuit(
builder,
row,
group_range,
vars.local_constants[selector_index],
num_selectors > 1,
);
vars.remove_prefix(num_selectors);
let my_constraints = self.eval_unfiltered_circuit(builder, vars);
for (acc, c) in combined_gate_constraints.iter_mut().zip(my_constraints) {
*acc = builder.mul_add_extension(filter, c, *acc);
}
}
/// The generators used to populate the witness.
/// Note: This should return exactly 1 generator per operation in the gate.
fn generators(&self, row: usize, local_constants: &[F]) -> Vec<WitnessGeneratorRef<F>>;
/// The number of wires used by this gate.
fn num_wires(&self) -> usize;
/// The number of constants used by this gate.
fn num_constants(&self) -> usize;
/// The maximum degree among this gate's constraint polynomials.
fn degree(&self) -> usize;
fn num_constraints(&self) -> usize;
/// Number of operations performed by the gate.
fn num_ops(&self) -> usize {
self.generators(0, &vec![F::ZERO; self.num_constants()])
.len()
}
/// Enables gates to store some "routed constants", if they have both unused constants and
/// unused routed wires.
///
/// Each entry in the returned `Vec` has the form `(constant_index, wire_index)`. `wire_index`
/// must correspond to a *routed* wire.
fn extra_constant_wires(&self) -> Vec<(usize, usize)> {
vec![]
}
}
/// A wrapper trait over a `Gate`, to allow for gate serialization.
pub trait AnyGate<F: RichField + Extendable<D>, const D: usize>: Gate<F, D> {
fn as_any(&self) -> &dyn Any;
}
impl<T: Gate<F, D>, F: RichField + Extendable<D>, const D: usize> AnyGate<F, D> for T {
fn as_any(&self) -> &dyn Any {
self
}
}
/// A wrapper around an `Arc<AnyGate>` which implements `PartialEq`, `Eq` and `Hash` based on gate IDs.
#[derive(Clone)]
pub struct GateRef<F: RichField + Extendable<D>, const D: usize>(pub(crate) Arc<dyn AnyGate<F, D>>);
impl<F: RichField + Extendable<D>, const D: usize> GateRef<F, D> {
pub fn new<G: Gate<F, D>>(gate: G) -> GateRef<F, D> {
GateRef(Arc::new(gate))
}
}
impl<F: RichField + Extendable<D>, const D: usize> PartialEq for GateRef<F, D> {
fn eq(&self, other: &Self) -> bool {
self.0.id() == other.0.id()
}
}
impl<F: RichField + Extendable<D>, const D: usize> Hash for GateRef<F, D> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.0.id().hash(state)
}
}
impl<F: RichField + Extendable<D>, const D: usize> Eq for GateRef<F, D> {}
impl<F: RichField + Extendable<D>, const D: usize> Debug for GateRef<F, D> {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "{}", self.0.id())
}
}
impl<F: RichField + Extendable<D>, const D: usize> Serialize for GateRef<F, D> {
fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
serializer.serialize_str(&self.0.id())
}
}
/// Map between gate parameters and available slots.
/// An available slot is of the form `(row, op)`, meaning the current available slot
/// is at gate index `row` in the `op`-th operation.
#[derive(Clone, Debug, Default)]
pub struct CurrentSlot<F: RichField + Extendable<D>, const D: usize> {
pub current_slot: HashMap<Vec<F>, (usize, usize)>,
}
/// A gate along with any constants used to configure it.
#[derive(Clone)]
pub struct GateInstance<F: RichField + Extendable<D>, const D: usize> {
pub gate_ref: GateRef<F, D>,
pub constants: Vec<F>,
}
/// Map each gate to a boolean prefix used to construct the gate's selector polynomial.
#[derive(Debug, Clone)]
pub struct PrefixedGate<F: RichField + Extendable<D>, const D: usize> {
pub gate: GateRef<F, D>,
pub prefix: Vec<bool>,
}
/// A gate's filter designed so that it is non-zero if `s = row`.
fn compute_filter<K: Field>(row: usize, group_range: Range<usize>, s: K, many_selector: bool) -> K {
debug_assert!(group_range.contains(&row));
group_range
.filter(|&i| i != row)
.chain(many_selector.then_some(UNUSED_SELECTOR))
.map(|i| K::from_canonical_usize(i) - s)
.product()
}
fn compute_filter_circuit<F: RichField + Extendable<D>, const D: usize>(
builder: &mut CircuitBuilder<F, D>,
row: usize,
group_range: Range<usize>,
s: ExtensionTarget<D>,
many_selectors: bool,
) -> ExtensionTarget<D> {
debug_assert!(group_range.contains(&row));
let v = group_range
.filter(|&i| i != row)
.chain(many_selectors.then_some(UNUSED_SELECTOR))
.map(|i| {
let c = builder.constant_extension(F::Extension::from_canonical_usize(i));
builder.sub_extension(c, s)
})
.collect::<Vec<_>>();
builder.mul_many_extension(v)
}