plonky2/starky/src/stark.rs
Sai 7203b7ad0b
Unified Recursion Circuit for Multi-Degree Starky Proof Verification (#1635)
* add test

* wip

* update witness util

* degree_bits: usize->target

* wip

* fix

* opt

* passed 3 tests

* fix

* convert g to g_ext

* hack observe final poly coeffs

* wip

* poc works

* wip

* pass tests

* more in test

* better test

* fix ci

* clippy

* fix

* fix

* start on multi steps

* wip

* set all zeros

* wip

* challenge passes

* work

* poc done

* fix non std build

* add comments

* update stark verifier

* fix clippy

* fix test build

* fix tests

* add comments

* add checks

* polish the checks

* more checks

* comments
2024-11-26 01:58:08 +09:00

280 lines
10 KiB
Rust

//! Implementation of the [`Stark`] trait that defines the set of constraints
//! related to a statement.
#[cfg(not(feature = "std"))]
use alloc::{vec, vec::Vec};
use plonky2::field::extension::{Extendable, FieldExtension};
use plonky2::field::packed::PackedField;
use plonky2::field::types::Field;
use plonky2::fri::structure::{
FriBatchInfo, FriBatchInfoTarget, FriInstanceInfo, FriInstanceInfoTarget, FriOracleInfo,
FriPolynomialInfo,
};
use plonky2::hash::hash_types::RichField;
use plonky2::iop::ext_target::ExtensionTarget;
use plonky2::iop::target::Target;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use crate::config::StarkConfig;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::evaluation_frame::StarkEvaluationFrame;
use crate::lookup::Lookup;
/// Represents a STARK system.
pub trait Stark<F: RichField + Extendable<D>, const D: usize>: Sync {
/// The total number of columns in the trace.
const COLUMNS: usize = Self::EvaluationFrameTarget::COLUMNS;
/// The total number of public inputs.
const PUBLIC_INPUTS: usize = Self::EvaluationFrameTarget::PUBLIC_INPUTS;
/// This is used to evaluate constraints natively.
type EvaluationFrame<FE, P, const D2: usize>: StarkEvaluationFrame<P, FE>
where
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>;
/// The `Target` version of `Self::EvaluationFrame`, used to evaluate constraints recursively.
type EvaluationFrameTarget: StarkEvaluationFrame<ExtensionTarget<D>, ExtensionTarget<D>>;
/// Evaluates constraints at a vector of points.
///
/// The points are elements of a field `FE`, a degree `D2` extension of `F`. This lets us
/// evaluate constraints over a larger domain if desired. This can also be called with `FE = F`
/// and `D2 = 1`, in which case we are using the trivial extension, i.e. just evaluating
/// constraints over `F`.
fn eval_packed_generic<FE, P, const D2: usize>(
&self,
vars: &Self::EvaluationFrame<FE, P, D2>,
yield_constr: &mut ConstraintConsumer<P>,
) where
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>;
/// Evaluates constraints at a vector of points from the base field `F`.
fn eval_packed_base<P: PackedField<Scalar = F>>(
&self,
vars: &Self::EvaluationFrame<F, P, 1>,
yield_constr: &mut ConstraintConsumer<P>,
) {
self.eval_packed_generic(vars, yield_constr)
}
/// Evaluates constraints at a single point from the degree `D` extension field.
fn eval_ext(
&self,
vars: &Self::EvaluationFrame<F::Extension, F::Extension, D>,
yield_constr: &mut ConstraintConsumer<F::Extension>,
) {
self.eval_packed_generic(vars, yield_constr)
}
/// Evaluates constraints at a vector of points from the degree `D` extension field.
/// This is like `eval_ext`, except in the context of a recursive circuit.
/// Note: constraints must be added through`yield_constr.constraint(builder, constraint)`
/// in the same order as they are given in `eval_packed_generic`.
fn eval_ext_circuit(
&self,
builder: &mut CircuitBuilder<F, D>,
vars: &Self::EvaluationFrameTarget,
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
);
/// Outputs the maximum constraint degree of this [`Stark`].
fn constraint_degree(&self) -> usize;
/// Outputs the maximum quotient polynomial's degree factor of this [`Stark`].
fn quotient_degree_factor(&self) -> usize {
match self.constraint_degree().checked_sub(1) {
Some(v) => 1.max(v),
None => 0,
}
}
/// Outputs the number of quotient polynomials this [`Stark`] would require with
/// the provided [`StarkConfig`]
fn num_quotient_polys(&self, config: &StarkConfig) -> usize {
self.quotient_degree_factor() * config.num_challenges
}
/// Computes the FRI instance used to prove this Stark.
fn fri_instance(
&self,
zeta: F::Extension,
g: F,
num_ctl_helpers: usize,
num_ctl_zs: Vec<usize>,
config: &StarkConfig,
) -> FriInstanceInfo<F, D> {
let mut oracles = vec![];
let trace_info = FriPolynomialInfo::from_range(oracles.len(), 0..Self::COLUMNS);
oracles.push(FriOracleInfo {
num_polys: Self::COLUMNS,
blinding: false,
});
let num_lookup_columns = self.num_lookup_helper_columns(config);
let num_auxiliary_polys = num_lookup_columns + num_ctl_helpers + num_ctl_zs.len();
let auxiliary_polys_info = if self.uses_lookups() || self.requires_ctls() {
let aux_polys = FriPolynomialInfo::from_range(oracles.len(), 0..num_auxiliary_polys);
oracles.push(FriOracleInfo {
num_polys: num_auxiliary_polys,
blinding: false,
});
aux_polys
} else {
vec![]
};
let num_quotient_polys = self.num_quotient_polys(config);
let quotient_info = if num_quotient_polys > 0 {
let quotient_polys =
FriPolynomialInfo::from_range(oracles.len(), 0..num_quotient_polys);
oracles.push(FriOracleInfo {
num_polys: num_quotient_polys,
blinding: false,
});
quotient_polys
} else {
vec![]
};
let zeta_batch = FriBatchInfo {
point: zeta,
polynomials: [
trace_info.clone(),
auxiliary_polys_info.clone(),
quotient_info,
]
.concat(),
};
let zeta_next_batch = FriBatchInfo {
point: zeta.scalar_mul(g),
polynomials: [trace_info, auxiliary_polys_info].concat(),
};
let mut batches = vec![zeta_batch, zeta_next_batch];
if self.requires_ctls() {
let ctl_zs_info = FriPolynomialInfo::from_range(
1, // auxiliary oracle index
num_lookup_columns + num_ctl_helpers..num_auxiliary_polys,
);
let ctl_first_batch = FriBatchInfo {
point: F::Extension::ONE,
polynomials: ctl_zs_info,
};
batches.push(ctl_first_batch);
}
FriInstanceInfo { oracles, batches }
}
/// Computes the FRI instance used to prove this Stark.
fn fri_instance_target(
&self,
builder: &mut CircuitBuilder<F, D>,
zeta: ExtensionTarget<D>,
g: Target,
num_ctl_helper_polys: usize,
num_ctl_zs: usize,
config: &StarkConfig,
) -> FriInstanceInfoTarget<D> {
let mut oracles = vec![];
let trace_info = FriPolynomialInfo::from_range(oracles.len(), 0..Self::COLUMNS);
oracles.push(FriOracleInfo {
num_polys: Self::COLUMNS,
blinding: false,
});
let num_lookup_columns = self.num_lookup_helper_columns(config);
let num_auxiliary_polys = num_lookup_columns + num_ctl_helper_polys + num_ctl_zs;
let auxiliary_polys_info = if self.uses_lookups() || self.requires_ctls() {
let aux_polys = FriPolynomialInfo::from_range(oracles.len(), 0..num_auxiliary_polys);
oracles.push(FriOracleInfo {
num_polys: num_auxiliary_polys,
blinding: false,
});
aux_polys
} else {
vec![]
};
let num_quotient_polys = self.num_quotient_polys(config);
let quotient_info = if num_quotient_polys > 0 {
let quotient_polys =
FriPolynomialInfo::from_range(oracles.len(), 0..num_quotient_polys);
oracles.push(FriOracleInfo {
num_polys: num_quotient_polys,
blinding: false,
});
quotient_polys
} else {
vec![]
};
let zeta_batch = FriBatchInfoTarget {
point: zeta,
polynomials: [
trace_info.clone(),
auxiliary_polys_info.clone(),
quotient_info,
]
.concat(),
};
let g_ext = builder.convert_to_ext(g);
let zeta_next = builder.mul_extension(g_ext, zeta);
let zeta_next_batch = FriBatchInfoTarget {
point: zeta_next,
polynomials: [trace_info, auxiliary_polys_info].concat(),
};
let mut batches = vec![zeta_batch, zeta_next_batch];
if self.requires_ctls() {
let ctl_zs_info = FriPolynomialInfo::from_range(
1, // auxiliary oracle index
num_lookup_columns + num_ctl_helper_polys..num_auxiliary_polys,
);
let ctl_first_batch = FriBatchInfoTarget {
point: builder.one_extension(),
polynomials: ctl_zs_info,
};
batches.push(ctl_first_batch);
}
FriInstanceInfoTarget { oracles, batches }
}
/// Outputs all the [`Lookup`] this STARK table needs to perform across its columns.
fn lookups(&self) -> Vec<Lookup<F>> {
vec![]
}
/// Outputs the number of total lookup helper columns, based on this STARK's vector
/// of [`Lookup`] and the number of challenges used by this [`StarkConfig`].
fn num_lookup_helper_columns(&self, config: &StarkConfig) -> usize {
self.lookups()
.iter()
.map(|lookup| lookup.num_helper_columns(self.constraint_degree()))
.sum::<usize>()
* config.num_challenges
}
/// Indicates whether this STARK uses lookups over some of its columns, and as such requires
/// additional steps during proof generation to handle auxiliary polynomials.
fn uses_lookups(&self) -> bool {
!self.lookups().is_empty()
}
/// Indicates whether this STARK belongs to a multi-STARK system, and as such may require
/// cross-table lookups to connect shared values across different traces.
///
/// It defaults to `false`, i.e. for simple uni-STARK systems.
fn requires_ctls(&self) -> bool {
false
}
}