plonky2/src/gadgets/interpolation.rs
Daniel Lubarov 671bb9be2e
Specialize InterpolationGate (#339)
* Specialize `InterpolationGate`

To cosets of subgroups of roots of unity. This way
- `InterpolationGate` needs fewer routed wires, bringing our minimum routed wires down from 28 to 25.
- The recursive `compute_evaluation` avoids some multiplications, saving 100~200 gates depending on `num_routed_wires`.

* Update test

* feedback
2021-11-05 09:29:08 -07:00

96 lines
3.5 KiB
Rust

use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::Extendable;
use crate::field::field_types::RichField;
use crate::gates::interpolation::InterpolationGate;
use crate::iop::target::Target;
use crate::plonk::circuit_builder::CircuitBuilder;
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Interpolates a polynomial, whose points are a coset of the multiplicative subgroup with the
/// given size, and whose values are given. Returns the evaluation of the interpolant at
/// `evaluation_point`.
pub fn interpolate_coset(
&mut self,
subgroup_bits: usize,
coset_shift: Target,
values: &[ExtensionTarget<D>],
evaluation_point: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let gate = InterpolationGate::new(subgroup_bits);
let gate_index = self.add_gate(gate.clone(), vec![]);
self.connect(coset_shift, Target::wire(gate_index, gate.wire_shift()));
for (i, &v) in values.iter().enumerate() {
self.connect_extension(
v,
ExtensionTarget::from_range(gate_index, gate.wires_value(i)),
);
}
self.connect_extension(
evaluation_point,
ExtensionTarget::from_range(gate_index, gate.wires_evaluation_point()),
);
ExtensionTarget::from_range(gate_index, gate.wires_evaluation_value())
}
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use crate::field::extension_field::quartic::QuarticExtension;
use crate::field::extension_field::FieldExtension;
use crate::field::field_types::Field;
use crate::field::goldilocks_field::GoldilocksField;
use crate::field::interpolation::interpolant;
use crate::iop::witness::PartialWitness;
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::circuit_data::CircuitConfig;
use crate::plonk::verifier::verify;
#[test]
fn test_interpolate() -> Result<()> {
type F = GoldilocksField;
type FF = QuarticExtension<GoldilocksField>;
let config = CircuitConfig::standard_recursion_config();
let pw = PartialWitness::new();
let mut builder = CircuitBuilder::<F, 4>::new(config);
let subgroup_bits = 2;
let len = 1 << subgroup_bits;
let coset_shift = F::rand();
let g = F::primitive_root_of_unity(subgroup_bits);
let points = F::cyclic_subgroup_coset_known_order(g, coset_shift, len);
let values = FF::rand_vec(len);
let homogeneous_points = points
.iter()
.zip(values.iter())
.map(|(&a, &b)| (<FF as FieldExtension<4>>::from_basefield(a), b))
.collect::<Vec<_>>();
let true_interpolant = interpolant(&homogeneous_points);
let z = FF::rand();
let true_eval = true_interpolant.eval(z);
let coset_shift_target = builder.constant(coset_shift);
let value_targets = values
.iter()
.map(|&v| (builder.constant_extension(v)))
.collect::<Vec<_>>();
let zt = builder.constant_extension(z);
let eval = builder.interpolate_coset(subgroup_bits, coset_shift_target, &value_targets, zt);
let true_eval_target = builder.constant_extension(true_eval);
builder.connect_extension(eval, true_eval_target);
let data = builder.build();
let proof = data.prove(pw)?;
verify(proof, &data.verifier_only, &data.common)
}
}