Hamish Ivey-Law ed3f0d546f
System Zero bit rotate and shift operations (#535)
* Complete versions of rotate left and shift left.

* Implement rotate/shift right.

* cargo fmt

* Fix documentation.

* Reduce visibility of helper functions.

* Address Jaqui's PR comments.

* Disable fall-through check as the run test assumes no failure here.

* Try to fix doctest failure.
2022-05-04 15:54:47 +10:00

186 lines
8.9 KiB
Rust

//! Arithmetic and logic unit.
pub(crate) const IS_ADD: usize = super::START_ALU;
pub(crate) const IS_SUB: usize = IS_ADD + 1;
pub(crate) const IS_MUL_ADD: usize = IS_SUB + 1;
pub(crate) const IS_DIV: usize = IS_MUL_ADD + 1;
pub(crate) const IS_AND: usize = IS_DIV + 1;
pub(crate) const IS_IOR: usize = IS_AND + 1;
pub(crate) const IS_XOR: usize = IS_IOR + 1;
pub(crate) const IS_ANDNOT: usize = IS_XOR + 1;
pub(crate) const IS_NOT: usize = IS_ANDNOT + 1;
pub(crate) const IS_ROTATE_LEFT: usize = IS_NOT + 1;
pub(crate) const IS_ROTATE_RIGHT: usize = IS_ROTATE_LEFT + 1;
pub(crate) const IS_SHIFT_LEFT: usize = IS_ROTATE_RIGHT + 1;
pub(crate) const IS_SHIFT_RIGHT: usize = IS_SHIFT_LEFT + 1;
pub(crate) const IS_ARITH_SHIFT_RIGHT: usize = IS_SHIFT_RIGHT + 1;
pub(crate) const ALL_OPERATIONS: [usize; 14] = [
IS_ADD,
IS_SUB,
IS_MUL_ADD,
IS_DIV,
IS_AND,
IS_IOR,
IS_XOR,
IS_ANDNOT,
IS_NOT,
IS_ROTATE_LEFT,
IS_ROTATE_RIGHT,
IS_SHIFT_LEFT,
IS_SHIFT_RIGHT,
IS_ARITH_SHIFT_RIGHT,
];
const START_SHARED_COLS: usize = IS_ARITH_SHIFT_RIGHT + 1;
/// Within the ALU, there are shared columns which can be used by any arithmetic/logic
/// circuit, depending on which one is active this cycle.
// Can be increased as needed as other operations are implemented.
const NUM_SHARED_COLS: usize = 130;
const fn shared_col(i: usize) -> usize {
debug_assert!(i < NUM_SHARED_COLS);
START_SHARED_COLS + i
}
/// The first value to be added; treated as an unsigned u32.
pub(crate) const COL_ADD_INPUT_0: usize = shared_col(0);
/// The second value to be added; treated as an unsigned u32.
pub(crate) const COL_ADD_INPUT_1: usize = shared_col(1);
/// The third value to be added; treated as an unsigned u32.
pub(crate) const COL_ADD_INPUT_2: usize = shared_col(2);
// Note: Addition outputs three 16-bit chunks, and since these values need to be range-checked
// anyway, we might as well use the range check unit's columns as our addition outputs. So the
// three proceeding columns are basically aliases, not columns owned by the ALU.
/// The first 16-bit chunk of the output, based on little-endian ordering.
pub(crate) const COL_ADD_OUTPUT_0: usize = super::range_check_16::col_rc_16_input(0);
/// The second 16-bit chunk of the output, based on little-endian ordering.
pub(crate) const COL_ADD_OUTPUT_1: usize = super::range_check_16::col_rc_16_input(1);
/// The third 16-bit chunk of the output, based on little-endian ordering.
pub(crate) const COL_ADD_OUTPUT_2: usize = super::range_check_16::col_rc_16_input(2);
/// Inputs for subtraction; the second value is subtracted from the
/// first; inputs treated as an unsigned u32.
pub(crate) const COL_SUB_INPUT_0: usize = shared_col(0);
pub(crate) const COL_SUB_INPUT_1: usize = shared_col(1);
/// The first 16-bit chunk of the output, based on little-endian ordering.
pub(crate) const COL_SUB_OUTPUT_0: usize = super::range_check_16::col_rc_16_input(0);
/// The second 16-bit chunk of the output, based on little-endian ordering.
pub(crate) const COL_SUB_OUTPUT_1: usize = super::range_check_16::col_rc_16_input(1);
/// The borrow output
pub(crate) const COL_SUB_OUTPUT_BORROW: usize = super::boolean::col_bit(0);
/// The first value to be multiplied; treated as an unsigned u32.
pub(crate) const COL_MUL_ADD_FACTOR_0: usize = shared_col(0);
/// The second value to be multiplied; treated as an unsigned u32.
pub(crate) const COL_MUL_ADD_FACTOR_1: usize = shared_col(1);
/// The value to be added to the product; treated as an unsigned u32.
pub(crate) const COL_MUL_ADD_ADDEND: usize = shared_col(2);
/// The inverse of `u32::MAX - result_hi`, where `output_hi` is the high 32-bits of the result.
/// See https://hackmd.io/NC-yRmmtRQSvToTHb96e8Q#Checking-element-validity
pub(crate) const COL_MUL_ADD_RESULT_CANONICAL_INV: usize = shared_col(3);
/// The first 16-bit chunk of the output, based on little-endian ordering.
pub(crate) const COL_MUL_ADD_OUTPUT_0: usize = super::range_check_16::col_rc_16_input(0);
/// The second 16-bit chunk of the output, based on little-endian ordering.
pub(crate) const COL_MUL_ADD_OUTPUT_1: usize = super::range_check_16::col_rc_16_input(1);
/// The third 16-bit chunk of the output, based on little-endian ordering.
pub(crate) const COL_MUL_ADD_OUTPUT_2: usize = super::range_check_16::col_rc_16_input(2);
/// The fourth 16-bit chunk of the output, based on little-endian ordering.
pub(crate) const COL_MUL_ADD_OUTPUT_3: usize = super::range_check_16::col_rc_16_input(3);
/// Dividend for division, as an unsigned u32
pub(crate) const COL_DIV_INPUT_DIVIDEND: usize = shared_col(0);
/// Divisor for division, as an unsigned u32
pub(crate) const COL_DIV_INPUT_DIVISOR: usize = shared_col(1);
/// Inverse of divisor, if one exists, and 0 otherwise
pub(crate) const COL_DIV_INVDIVISOR: usize = shared_col(2);
/// 1 if divisor is nonzero and 0 otherwise
pub(crate) const COL_DIV_NONZERO_DIVISOR: usize = shared_col(3);
/// The first 16-bit chunk of the quotient, based on little-endian ordering.
pub(crate) const COL_DIV_OUTPUT_QUOT_0: usize = super::range_check_16::col_rc_16_input(0);
/// The second 16-bit chunk of the quotient, based on little-endian ordering.
pub(crate) const COL_DIV_OUTPUT_QUOT_1: usize = super::range_check_16::col_rc_16_input(1);
/// The first 16-bit chunk of the remainder, based on little-endian ordering.
pub(crate) const COL_DIV_OUTPUT_REM_0: usize = super::range_check_16::col_rc_16_input(2);
/// The second 16-bit chunk of the remainder, based on little-endian ordering.
pub(crate) const COL_DIV_OUTPUT_REM_1: usize = super::range_check_16::col_rc_16_input(3);
/// The first 16-bit chunk of a temporary value (divisor - remainder - 1).
pub(crate) const COL_DIV_RANGE_CHECKED_TMP_0: usize = super::range_check_16::col_rc_16_input(4);
/// The second 16-bit chunk of a temporary value (divisor - remainder - 1).
pub(crate) const COL_DIV_RANGE_CHECKED_TMP_1: usize = super::range_check_16::col_rc_16_input(5);
///
/// Bitwise logic operations
///
/// Bit decomposition of 64-bit values, as 32-bit low and high halves.
const fn gen_bitop_nbit_input_regs<const N: usize>(start: usize) -> [usize; N] {
let mut regs = [0usize; N];
let mut i = 0;
while i < N {
regs[i] = shared_col(start + i);
i += 1;
}
regs
}
pub(crate) const COL_BIT_DECOMP_INPUT_A_LO_BIN_REGS: [usize; 32] =
gen_bitop_nbit_input_regs::<32>(0);
pub(crate) const COL_BIT_DECOMP_INPUT_A_HI_BIN_REGS: [usize; 32] =
gen_bitop_nbit_input_regs::<32>(32);
pub(crate) const COL_BIT_DECOMP_INPUT_B_LO_BIN_REGS: [usize; 32] =
gen_bitop_nbit_input_regs::<32>(64);
pub(crate) const COL_BIT_DECOMP_INPUT_B_HI_BIN_REGS: [usize; 32] =
gen_bitop_nbit_input_regs::<32>(96);
/// The first 32-bit chunk of the output, based on little-endian ordering.
pub(crate) const COL_BITOP_OUTPUT_0: usize = shared_col(128);
/// The second 32-bit chunk of the output, based on little-endian ordering.
pub(crate) const COL_BITOP_OUTPUT_1: usize = shared_col(129);
/// Input value to be rotated or shifted, low 32 bits
pub(crate) const COL_ROTATE_SHIFT_INPUT_LO: usize = shared_col(0);
/// Input value to be rotated or shifted, high 32 bits
pub(crate) const COL_ROTATE_SHIFT_INPUT_HI: usize = shared_col(1);
/// Bit decomposition of EXP, which is DELTA mod 32 for left
/// rotate/shift; bit decomposition of (32 - DELTA mod 32) mod 32 for
/// right rotate/shift.
pub(crate) const COL_ROTATE_SHIFT_EXP_BITS: [usize; 5] = gen_bitop_nbit_input_regs::<5>(2);
/// Top bit of the 6-bit value DELTA; also interpreted as DELTA >= 32.
pub(crate) const COL_ROTATE_SHIFT_DELTA_DIV32: usize = shared_col(7);
/// POW_EXP = 2^EXP, the AUX_i vars are helpers.
pub(crate) const COL_ROTATE_SHIFT_POW_EXP_AUX_0: usize = shared_col(8);
pub(crate) const COL_ROTATE_SHIFT_POW_EXP_AUX_1: usize = shared_col(9);
pub(crate) const COL_ROTATE_SHIFT_POW_EXP_AUX_2: usize = shared_col(10);
pub(crate) const COL_ROTATE_SHIFT_POW_EXP: usize = shared_col(11);
/// low 32 bits of INPUT_LO * 2^EXP
pub(crate) const COL_ROTATE_SHIFT_INPUT_LO_DISPLACED_0: usize = shared_col(12);
/// high 32 bits of INPUT_LO * 2^EXP
pub(crate) const COL_ROTATE_SHIFT_INPUT_LO_DISPLACED_1: usize = shared_col(13);
/// low 32 bits of INPUT_HI * 2^EXP
pub(crate) const COL_ROTATE_SHIFT_INPUT_HI_DISPLACED_0: usize = shared_col(14);
/// high 32 bits of INPUT_HI * 2^EXP
pub(crate) const COL_ROTATE_SHIFT_INPUT_HI_DISPLACED_1: usize = shared_col(15);
pub(crate) const COL_ROTATE_SHIFT_INPUT_LO_DISPLACED_AUX_0: usize = shared_col(16);
pub(crate) const COL_ROTATE_SHIFT_INPUT_LO_DISPLACED_AUX_1: usize = shared_col(17);
pub(crate) const COL_ROTATE_SHIFT_INPUT_HI_DISPLACED_AUX_0: usize = shared_col(18);
pub(crate) const COL_ROTATE_SHIFT_INPUT_HI_DISPLACED_AUX_1: usize = shared_col(19);
/// The first 32-bit chunk of the output, based on little-endian ordering.
pub(crate) const COL_ROTATE_SHIFT_OUTPUT_0: usize = shared_col(20);
/// The second 32-bit chunk of the output, based on little-endian ordering.
pub(crate) const COL_ROTATE_SHIFT_OUTPUT_1: usize = shared_col(21);
pub(super) const END: usize = START_SHARED_COLS + NUM_SHARED_COLS;