plonky2/evm/src/cpu/kernel/assembler.rs

274 lines
9.1 KiB
Rust

use std::collections::HashMap;
use super::ast::PushTarget;
use crate::cpu::kernel::{
ast::{File, Item},
opcodes::{get_opcode, get_push_opcode},
};
/// The number of bytes to push when pushing an offset within the code (i.e. when assembling jumps).
/// Ideally we would automatically use the minimal number of bytes required, but that would be
/// nontrivial given the circular dependency between an offset and its size.
const BYTES_PER_OFFSET: u8 = 3;
#[derive(PartialEq, Eq, Debug)]
pub struct Kernel {
pub(crate) code: Vec<u8>,
pub(crate) global_labels: HashMap<String, usize>,
}
pub(crate) fn assemble(files: Vec<File>) -> Kernel {
let macros = find_macros(&files);
let mut code = vec![];
let mut global_labels = HashMap::new();
for file in files {
let expanded_file = expand_macros(file.body, &macros);
assemble_file(expanded_file, &mut code, &mut global_labels);
}
Kernel {
code,
global_labels,
}
}
fn find_macros(files: &[File]) -> HashMap<String, Vec<Item>> {
let mut macros = HashMap::new();
for file in files {
for item in &file.body {
if let Item::MacroDef(name, items) = item {
macros.insert(name.clone(), items.clone());
}
}
}
macros
}
fn expand_macros(body: Vec<Item>, macros: &HashMap<String, Vec<Item>>) -> Vec<Item> {
let mut expanded = vec![];
for item in body {
match item {
Item::MacroDef(_, _) => {
// At this phase, we no longer need macro definitions.
}
Item::MacroCall(m) => {
let mut expanded_item = macros
.get(&m)
.cloned()
.unwrap_or_else(|| panic!("No such macro: {}", m));
// Recursively expand any macros in the expanded code.
expanded_item = expand_macros(expanded_item, macros);
expanded.extend(expanded_item);
}
item => {
expanded.push(item);
}
}
}
expanded
}
fn assemble_file(body: Vec<Item>, code: &mut Vec<u8>, global_labels: &mut HashMap<String, usize>) {
// First discover the offset of each label in this file.
let mut local_labels = HashMap::<String, usize>::new();
let mut offset = code.len();
for item in &body {
match item {
Item::MacroDef(_, _) | Item::MacroCall(_) => {
panic!("Macros should have been expanded already")
}
Item::GlobalLabelDeclaration(label) => {
let old = global_labels.insert(label.clone(), offset);
assert!(old.is_none(), "Duplicate global label: {}", label);
}
Item::LocalLabelDeclaration(label) => {
let old = local_labels.insert(label.clone(), offset);
assert!(old.is_none(), "Duplicate local label: {}", label);
}
Item::Push(target) => offset += 1 + push_target_size(target) as usize,
Item::StandardOp(_) => offset += 1,
Item::Bytes(bytes) => offset += bytes.len(),
}
}
// Now that we have label offsets, we can assemble the file.
for item in body {
match item {
Item::MacroDef(_, _) | Item::MacroCall(_) => {
panic!("Macros should have been expanded already")
}
Item::GlobalLabelDeclaration(_) | Item::LocalLabelDeclaration(_) => {
// Nothing to do; we processed labels in the prior phase.
}
Item::Push(target) => {
let target_bytes: Vec<u8> = match target {
PushTarget::Literal(literal) => literal.to_trimmed_be_bytes(),
PushTarget::Label(label) => {
let offset = local_labels
.get(&label)
.or_else(|| global_labels.get(&label))
.unwrap_or_else(|| panic!("No such label: {}", label));
// We want the BYTES_PER_OFFSET least significant bytes in BE order.
// It's easiest to rev the first BYTES_PER_OFFSET bytes of the LE encoding.
(0..BYTES_PER_OFFSET)
.rev()
.map(|i| offset.to_le_bytes()[i as usize])
.collect()
}
};
code.push(get_push_opcode(target_bytes.len() as u8));
code.extend(target_bytes);
}
Item::StandardOp(opcode) => {
code.push(get_opcode(&opcode));
}
Item::Bytes(bytes) => code.extend(bytes.iter().map(|b| b.to_u8())),
}
}
assert_eq!(
code.len(),
offset,
"The two phases gave different code lengths"
);
}
/// The size of a `PushTarget`, in bytes.
fn push_target_size(target: &PushTarget) -> u8 {
match target {
PushTarget::Literal(lit) => lit.to_trimmed_be_bytes().len() as u8,
PushTarget::Label(_) => BYTES_PER_OFFSET,
}
}
#[cfg(test)]
mod tests {
use std::collections::HashMap;
use itertools::Itertools;
use crate::cpu::kernel::parser::parse;
use crate::cpu::kernel::{assembler::*, ast::*};
#[test]
fn two_files() {
// We will test two simple files, with a label and a jump, to ensure that jump offsets
// are correctly shifted based on the offset of the containing file.
let file_1 = File {
body: vec![
Item::GlobalLabelDeclaration("function_1".to_string()),
Item::StandardOp("JUMPDEST".to_string()),
Item::StandardOp("ADD".to_string()),
Item::StandardOp("MUL".to_string()),
],
};
let file_2 = File {
body: vec![
Item::GlobalLabelDeclaration("function_2".to_string()),
Item::StandardOp("JUMPDEST".to_string()),
Item::StandardOp("DIV".to_string()),
Item::LocalLabelDeclaration("mylabel".to_string()),
Item::StandardOp("JUMPDEST".to_string()),
Item::StandardOp("MOD".to_string()),
Item::Push(PushTarget::Label("mylabel".to_string())),
Item::StandardOp("JUMP".to_string()),
],
};
let expected_code = vec![
get_opcode("JUMPDEST"),
get_opcode("ADD"),
get_opcode("MUL"),
get_opcode("JUMPDEST"),
get_opcode("DIV"),
get_opcode("JUMPDEST"),
get_opcode("MOD"),
get_push_opcode(BYTES_PER_OFFSET),
// The label offset, 5, in 3-byte BE form.
0,
0,
5,
get_opcode("JUMP"),
];
let mut expected_global_labels = HashMap::new();
expected_global_labels.insert("function_1".to_string(), 0);
expected_global_labels.insert("function_2".to_string(), 3);
let expected_kernel = Kernel {
code: expected_code,
global_labels: expected_global_labels,
};
let program = vec![file_1, file_2];
assert_eq!(assemble(program), expected_kernel);
}
#[test]
#[should_panic]
fn global_label_collision() {
let file_1 = File {
body: vec![
Item::GlobalLabelDeclaration("foo".to_string()),
Item::StandardOp("JUMPDEST".to_string()),
],
};
let file_2 = File {
body: vec![
Item::GlobalLabelDeclaration("foo".to_string()),
Item::StandardOp("JUMPDEST".to_string()),
],
};
assemble(vec![file_1, file_2]);
}
#[test]
#[should_panic]
fn local_label_collision() {
let file = File {
body: vec![
Item::LocalLabelDeclaration("foo".to_string()),
Item::StandardOp("JUMPDEST".to_string()),
Item::LocalLabelDeclaration("foo".to_string()),
Item::StandardOp("ADD".to_string()),
],
};
assemble(vec![file]);
}
#[test]
fn literal_bytes() {
let file = File {
body: vec![
Item::Bytes(vec![
Literal::Hex("12".to_string()),
Literal::Decimal("42".to_string()),
]),
Item::Bytes(vec![
Literal::Hex("fe".to_string()),
Literal::Decimal("255".to_string()),
]),
],
};
let code = assemble(vec![file]).code;
assert_eq!(code, vec![0x12, 42, 0xfe, 255]);
}
#[test]
fn macro_in_macro() {
let kernel = parse_and_assemble(&[
"%macro foo %bar %bar %endmacro",
"%macro bar ADD %endmacro",
"%foo",
]);
let add = get_opcode("ADD");
assert_eq!(kernel.code, vec![add, add]);
}
fn parse_and_assemble(files: &[&str]) -> Kernel {
let parsed_files = files.iter().map(|f| parse(f)).collect_vec();
assemble(parsed_files)
}
}