plonky2/evm/src/fixed_recursive_verifier.rs
Robin Salen 6dd2e313c4
Add upgradeability to AllRecursiveCircuits and output verifier data (#1387)
* Add upgradeable preprocessed sizes

* Add verifier data
2023-11-28 12:23:20 -05:00

1479 lines
55 KiB
Rust

use core::mem::{self, MaybeUninit};
use std::collections::BTreeMap;
use std::ops::Range;
use eth_trie_utils::partial_trie::{HashedPartialTrie, Node, PartialTrie};
use hashbrown::HashMap;
use itertools::{zip_eq, Itertools};
use plonky2::field::extension::Extendable;
use plonky2::fri::FriParams;
use plonky2::gates::constant::ConstantGate;
use plonky2::gates::noop::NoopGate;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::challenger::RecursiveChallenger;
use plonky2::iop::target::{BoolTarget, Target};
use plonky2::iop::witness::{PartialWitness, WitnessWrite};
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::circuit_data::{
CircuitConfig, CircuitData, CommonCircuitData, VerifierCircuitData, VerifierCircuitTarget,
};
use plonky2::plonk::config::{AlgebraicHasher, GenericConfig};
use plonky2::plonk::proof::{ProofWithPublicInputs, ProofWithPublicInputsTarget};
use plonky2::recursion::cyclic_recursion::check_cyclic_proof_verifier_data;
use plonky2::recursion::dummy_circuit::cyclic_base_proof;
use plonky2::util::serialization::{
Buffer, GateSerializer, IoResult, Read, WitnessGeneratorSerializer, Write,
};
use plonky2::util::timing::TimingTree;
use plonky2_util::log2_ceil;
use crate::all_stark::{all_cross_table_lookups, AllStark, Table, NUM_TABLES};
use crate::config::StarkConfig;
use crate::cross_table_lookup::{
get_grand_product_challenge_set_target, verify_cross_table_lookups_circuit, CrossTableLookup,
GrandProductChallengeSet,
};
use crate::generation::GenerationInputs;
use crate::get_challenges::observe_public_values_target;
use crate::proof::{
BlockHashesTarget, BlockMetadataTarget, ExtraBlockData, ExtraBlockDataTarget, PublicValues,
PublicValuesTarget, StarkProofWithMetadata, TrieRootsTarget,
};
use crate::prover::prove;
use crate::recursive_verifier::{
add_common_recursion_gates, add_virtual_public_values,
get_memory_extra_looking_products_circuit, recursive_stark_circuit, set_public_value_targets,
PlonkWrapperCircuit, PublicInputs, StarkWrapperCircuit,
};
use crate::stark::Stark;
use crate::util::h256_limbs;
/// The recursion threshold. We end a chain of recursive proofs once we reach this size.
const THRESHOLD_DEGREE_BITS: usize = 13;
/// Contains all recursive circuits used in the system. For each STARK and each initial
/// `degree_bits`, this contains a chain of recursive circuits for shrinking that STARK from
/// `degree_bits` to a constant `THRESHOLD_DEGREE_BITS`. It also contains a special root circuit
/// for combining each STARK's shrunk wrapper proof into a single proof.
#[derive(Eq, PartialEq, Debug)]
pub struct AllRecursiveCircuits<F, C, const D: usize>
where
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
C::Hasher: AlgebraicHasher<F>,
{
/// The EVM root circuit, which aggregates the (shrunk) per-table recursive proofs.
pub root: RootCircuitData<F, C, D>,
pub aggregation: AggregationCircuitData<F, C, D>,
/// The block circuit, which verifies an aggregation root proof and a previous block proof.
pub block: BlockCircuitData<F, C, D>,
/// Holds chains of circuits for each table and for each initial `degree_bits`.
by_table: [RecursiveCircuitsForTable<F, C, D>; NUM_TABLES],
}
/// Data for the EVM root circuit, which is used to combine each STARK's shrunk wrapper proof
/// into a single proof.
#[derive(Eq, PartialEq, Debug)]
pub struct RootCircuitData<F, C, const D: usize>
where
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
{
pub circuit: CircuitData<F, C, D>,
proof_with_pis: [ProofWithPublicInputsTarget<D>; NUM_TABLES],
/// For each table, various inner circuits may be used depending on the initial table size.
/// This target holds the index of the circuit (within `final_circuits()`) that was used.
index_verifier_data: [Target; NUM_TABLES],
/// Public inputs containing public values.
public_values: PublicValuesTarget,
/// Public inputs used for cyclic verification. These aren't actually used for EVM root
/// proofs; the circuit has them just to match the structure of aggregation proofs.
cyclic_vk: VerifierCircuitTarget,
}
impl<F, C, const D: usize> RootCircuitData<F, C, D>
where
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
{
fn to_buffer(
&self,
buffer: &mut Vec<u8>,
gate_serializer: &dyn GateSerializer<F, D>,
generator_serializer: &dyn WitnessGeneratorSerializer<F, D>,
) -> IoResult<()> {
buffer.write_circuit_data(&self.circuit, gate_serializer, generator_serializer)?;
for proof in &self.proof_with_pis {
buffer.write_target_proof_with_public_inputs(proof)?;
}
for index in self.index_verifier_data {
buffer.write_target(index)?;
}
self.public_values.to_buffer(buffer)?;
buffer.write_target_verifier_circuit(&self.cyclic_vk)?;
Ok(())
}
fn from_buffer(
buffer: &mut Buffer,
gate_serializer: &dyn GateSerializer<F, D>,
generator_serializer: &dyn WitnessGeneratorSerializer<F, D>,
) -> IoResult<Self> {
let circuit = buffer.read_circuit_data(gate_serializer, generator_serializer)?;
let mut proof_with_pis = Vec::with_capacity(NUM_TABLES);
for _ in 0..NUM_TABLES {
proof_with_pis.push(buffer.read_target_proof_with_public_inputs()?);
}
let mut index_verifier_data = Vec::with_capacity(NUM_TABLES);
for _ in 0..NUM_TABLES {
index_verifier_data.push(buffer.read_target()?);
}
let public_values = PublicValuesTarget::from_buffer(buffer)?;
let cyclic_vk = buffer.read_target_verifier_circuit()?;
Ok(Self {
circuit,
proof_with_pis: proof_with_pis.try_into().unwrap(),
index_verifier_data: index_verifier_data.try_into().unwrap(),
public_values,
cyclic_vk,
})
}
}
/// Data for the aggregation circuit, which is used to compress two proofs into one. Each inner
/// proof can be either an EVM root proof or another aggregation proof.
#[derive(Eq, PartialEq, Debug)]
pub struct AggregationCircuitData<F, C, const D: usize>
where
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
{
pub circuit: CircuitData<F, C, D>,
lhs: AggregationChildTarget<D>,
rhs: AggregationChildTarget<D>,
public_values: PublicValuesTarget,
cyclic_vk: VerifierCircuitTarget,
}
impl<F, C, const D: usize> AggregationCircuitData<F, C, D>
where
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
{
fn to_buffer(
&self,
buffer: &mut Vec<u8>,
gate_serializer: &dyn GateSerializer<F, D>,
generator_serializer: &dyn WitnessGeneratorSerializer<F, D>,
) -> IoResult<()> {
buffer.write_circuit_data(&self.circuit, gate_serializer, generator_serializer)?;
buffer.write_target_verifier_circuit(&self.cyclic_vk)?;
self.public_values.to_buffer(buffer)?;
self.lhs.to_buffer(buffer)?;
self.rhs.to_buffer(buffer)?;
Ok(())
}
fn from_buffer(
buffer: &mut Buffer,
gate_serializer: &dyn GateSerializer<F, D>,
generator_serializer: &dyn WitnessGeneratorSerializer<F, D>,
) -> IoResult<Self> {
let circuit = buffer.read_circuit_data(gate_serializer, generator_serializer)?;
let cyclic_vk = buffer.read_target_verifier_circuit()?;
let public_values = PublicValuesTarget::from_buffer(buffer)?;
let lhs = AggregationChildTarget::from_buffer(buffer)?;
let rhs = AggregationChildTarget::from_buffer(buffer)?;
Ok(Self {
circuit,
lhs,
rhs,
public_values,
cyclic_vk,
})
}
}
#[derive(Eq, PartialEq, Debug)]
struct AggregationChildTarget<const D: usize> {
is_agg: BoolTarget,
agg_proof: ProofWithPublicInputsTarget<D>,
evm_proof: ProofWithPublicInputsTarget<D>,
}
impl<const D: usize> AggregationChildTarget<D> {
fn to_buffer(&self, buffer: &mut Vec<u8>) -> IoResult<()> {
buffer.write_target_bool(self.is_agg)?;
buffer.write_target_proof_with_public_inputs(&self.agg_proof)?;
buffer.write_target_proof_with_public_inputs(&self.evm_proof)?;
Ok(())
}
fn from_buffer(buffer: &mut Buffer) -> IoResult<Self> {
let is_agg = buffer.read_target_bool()?;
let agg_proof = buffer.read_target_proof_with_public_inputs()?;
let evm_proof = buffer.read_target_proof_with_public_inputs()?;
Ok(Self {
is_agg,
agg_proof,
evm_proof,
})
}
fn public_values<F: RichField + Extendable<D>>(
&self,
builder: &mut CircuitBuilder<F, D>,
) -> PublicValuesTarget {
let agg_pv = PublicValuesTarget::from_public_inputs(&self.agg_proof.public_inputs);
let evm_pv = PublicValuesTarget::from_public_inputs(&self.evm_proof.public_inputs);
PublicValuesTarget::select(builder, self.is_agg, agg_pv, evm_pv)
}
}
#[derive(Eq, PartialEq, Debug)]
pub struct BlockCircuitData<F, C, const D: usize>
where
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
{
pub circuit: CircuitData<F, C, D>,
has_parent_block: BoolTarget,
parent_block_proof: ProofWithPublicInputsTarget<D>,
agg_root_proof: ProofWithPublicInputsTarget<D>,
public_values: PublicValuesTarget,
cyclic_vk: VerifierCircuitTarget,
}
impl<F, C, const D: usize> BlockCircuitData<F, C, D>
where
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
{
fn to_buffer(
&self,
buffer: &mut Vec<u8>,
gate_serializer: &dyn GateSerializer<F, D>,
generator_serializer: &dyn WitnessGeneratorSerializer<F, D>,
) -> IoResult<()> {
buffer.write_circuit_data(&self.circuit, gate_serializer, generator_serializer)?;
buffer.write_target_bool(self.has_parent_block)?;
buffer.write_target_proof_with_public_inputs(&self.parent_block_proof)?;
buffer.write_target_proof_with_public_inputs(&self.agg_root_proof)?;
self.public_values.to_buffer(buffer)?;
buffer.write_target_verifier_circuit(&self.cyclic_vk)?;
Ok(())
}
fn from_buffer(
buffer: &mut Buffer,
gate_serializer: &dyn GateSerializer<F, D>,
generator_serializer: &dyn WitnessGeneratorSerializer<F, D>,
) -> IoResult<Self> {
let circuit = buffer.read_circuit_data(gate_serializer, generator_serializer)?;
let has_parent_block = buffer.read_target_bool()?;
let parent_block_proof = buffer.read_target_proof_with_public_inputs()?;
let agg_root_proof = buffer.read_target_proof_with_public_inputs()?;
let public_values = PublicValuesTarget::from_buffer(buffer)?;
let cyclic_vk = buffer.read_target_verifier_circuit()?;
Ok(Self {
circuit,
has_parent_block,
parent_block_proof,
agg_root_proof,
public_values,
cyclic_vk,
})
}
}
impl<F, C, const D: usize> AllRecursiveCircuits<F, C, D>
where
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F> + 'static,
C::Hasher: AlgebraicHasher<F>,
{
pub fn to_bytes(
&self,
gate_serializer: &dyn GateSerializer<F, D>,
generator_serializer: &dyn WitnessGeneratorSerializer<F, D>,
) -> IoResult<Vec<u8>> {
// TODO: would be better to initialize it dynamically based on the supported max degree.
let mut buffer = Vec::with_capacity(1 << 34);
self.root
.to_buffer(&mut buffer, gate_serializer, generator_serializer)?;
self.aggregation
.to_buffer(&mut buffer, gate_serializer, generator_serializer)?;
self.block
.to_buffer(&mut buffer, gate_serializer, generator_serializer)?;
for table in &self.by_table {
table.to_buffer(&mut buffer, gate_serializer, generator_serializer)?;
}
Ok(buffer)
}
pub fn from_bytes(
bytes: &[u8],
gate_serializer: &dyn GateSerializer<F, D>,
generator_serializer: &dyn WitnessGeneratorSerializer<F, D>,
) -> IoResult<Self> {
let mut buffer = Buffer::new(bytes);
let root =
RootCircuitData::from_buffer(&mut buffer, gate_serializer, generator_serializer)?;
let aggregation = AggregationCircuitData::from_buffer(
&mut buffer,
gate_serializer,
generator_serializer,
)?;
let block =
BlockCircuitData::from_buffer(&mut buffer, gate_serializer, generator_serializer)?;
// Tricky use of MaybeUninit to remove the need for implementing Debug
// for all underlying types, necessary to convert a by_table Vec to an array.
let by_table = {
let mut by_table: [MaybeUninit<RecursiveCircuitsForTable<F, C, D>>; NUM_TABLES] =
unsafe { MaybeUninit::uninit().assume_init() };
for table in &mut by_table[..] {
let value = RecursiveCircuitsForTable::from_buffer(
&mut buffer,
gate_serializer,
generator_serializer,
)?;
*table = MaybeUninit::new(value);
}
unsafe {
mem::transmute::<_, [RecursiveCircuitsForTable<F, C, D>; NUM_TABLES]>(by_table)
}
};
Ok(Self {
root,
aggregation,
block,
by_table,
})
}
/// Preprocess all recursive circuits used by the system.
pub fn new(
all_stark: &AllStark<F, D>,
degree_bits_ranges: &[Range<usize>; NUM_TABLES],
stark_config: &StarkConfig,
) -> Self {
let arithmetic = RecursiveCircuitsForTable::new(
Table::Arithmetic,
&all_stark.arithmetic_stark,
degree_bits_ranges[Table::Arithmetic as usize].clone(),
&all_stark.cross_table_lookups,
stark_config,
);
let byte_packing = RecursiveCircuitsForTable::new(
Table::BytePacking,
&all_stark.byte_packing_stark,
degree_bits_ranges[Table::BytePacking as usize].clone(),
&all_stark.cross_table_lookups,
stark_config,
);
let cpu = RecursiveCircuitsForTable::new(
Table::Cpu,
&all_stark.cpu_stark,
degree_bits_ranges[Table::Cpu as usize].clone(),
&all_stark.cross_table_lookups,
stark_config,
);
let keccak = RecursiveCircuitsForTable::new(
Table::Keccak,
&all_stark.keccak_stark,
degree_bits_ranges[Table::Keccak as usize].clone(),
&all_stark.cross_table_lookups,
stark_config,
);
let keccak_sponge = RecursiveCircuitsForTable::new(
Table::KeccakSponge,
&all_stark.keccak_sponge_stark,
degree_bits_ranges[Table::KeccakSponge as usize].clone(),
&all_stark.cross_table_lookups,
stark_config,
);
let logic = RecursiveCircuitsForTable::new(
Table::Logic,
&all_stark.logic_stark,
degree_bits_ranges[Table::Logic as usize].clone(),
&all_stark.cross_table_lookups,
stark_config,
);
let memory = RecursiveCircuitsForTable::new(
Table::Memory,
&all_stark.memory_stark,
degree_bits_ranges[Table::Memory as usize].clone(),
&all_stark.cross_table_lookups,
stark_config,
);
let by_table = [
arithmetic,
byte_packing,
cpu,
keccak,
keccak_sponge,
logic,
memory,
];
let root = Self::create_root_circuit(&by_table, stark_config);
let aggregation = Self::create_aggregation_circuit(&root);
let block = Self::create_block_circuit(&aggregation);
Self {
root,
aggregation,
block,
by_table,
}
}
/// Expand the preprocessed STARK table circuits with the provided ranges.
///
/// If a range for a given table is contained within the current one, this will be a no-op.
/// Otherwise, it will add the circuits for the missing table sizes, and regenerate the upper circuits.
pub fn expand(
&mut self,
all_stark: &AllStark<F, D>,
degree_bits_ranges: &[Range<usize>; NUM_TABLES],
stark_config: &StarkConfig,
) {
self.by_table[Table::Arithmetic as usize].expand(
Table::Arithmetic,
&all_stark.arithmetic_stark,
degree_bits_ranges[Table::Arithmetic as usize].clone(),
&all_stark.cross_table_lookups,
stark_config,
);
self.by_table[Table::BytePacking as usize].expand(
Table::BytePacking,
&all_stark.byte_packing_stark,
degree_bits_ranges[Table::BytePacking as usize].clone(),
&all_stark.cross_table_lookups,
stark_config,
);
self.by_table[Table::Cpu as usize].expand(
Table::Cpu,
&all_stark.cpu_stark,
degree_bits_ranges[Table::Cpu as usize].clone(),
&all_stark.cross_table_lookups,
stark_config,
);
self.by_table[Table::Keccak as usize].expand(
Table::Keccak,
&all_stark.keccak_stark,
degree_bits_ranges[Table::Keccak as usize].clone(),
&all_stark.cross_table_lookups,
stark_config,
);
self.by_table[Table::KeccakSponge as usize].expand(
Table::KeccakSponge,
&all_stark.keccak_sponge_stark,
degree_bits_ranges[Table::KeccakSponge as usize].clone(),
&all_stark.cross_table_lookups,
stark_config,
);
self.by_table[Table::Logic as usize].expand(
Table::Logic,
&all_stark.logic_stark,
degree_bits_ranges[Table::Logic as usize].clone(),
&all_stark.cross_table_lookups,
stark_config,
);
self.by_table[Table::Memory as usize].expand(
Table::Memory,
&all_stark.memory_stark,
degree_bits_ranges[Table::Memory as usize].clone(),
&all_stark.cross_table_lookups,
stark_config,
);
// Regenerate the upper circuits.
self.root = Self::create_root_circuit(&self.by_table, stark_config);
self.aggregation = Self::create_aggregation_circuit(&self.root);
self.block = Self::create_block_circuit(&self.aggregation);
}
/// Outputs the `VerifierCircuitData` needed to verify any block proof
/// generated by an honest prover.
pub fn final_verifier_data(&self) -> VerifierCircuitData<F, C, D> {
self.block.circuit.verifier_data()
}
fn create_root_circuit(
by_table: &[RecursiveCircuitsForTable<F, C, D>; NUM_TABLES],
stark_config: &StarkConfig,
) -> RootCircuitData<F, C, D> {
let inner_common_data: [_; NUM_TABLES] =
core::array::from_fn(|i| &by_table[i].final_circuits()[0].common);
let mut builder = CircuitBuilder::new(CircuitConfig::standard_recursion_config());
let public_values = add_virtual_public_values(&mut builder);
let recursive_proofs =
core::array::from_fn(|i| builder.add_virtual_proof_with_pis(inner_common_data[i]));
let pis: [_; NUM_TABLES] = core::array::from_fn(|i| {
PublicInputs::<Target, <C::Hasher as AlgebraicHasher<F>>::AlgebraicPermutation>::from_vec(
&recursive_proofs[i].public_inputs,
stark_config,
)
});
let index_verifier_data = core::array::from_fn(|_i| builder.add_virtual_target());
let mut challenger = RecursiveChallenger::<F, C::Hasher, D>::new(&mut builder);
for pi in &pis {
for h in &pi.trace_cap {
challenger.observe_elements(h);
}
}
observe_public_values_target::<F, C, D>(&mut challenger, &public_values);
let ctl_challenges = get_grand_product_challenge_set_target(
&mut builder,
&mut challenger,
stark_config.num_challenges,
);
// Check that the correct CTL challenges are used in every proof.
for pi in &pis {
for i in 0..stark_config.num_challenges {
builder.connect(
ctl_challenges.challenges[i].beta,
pi.ctl_challenges.challenges[i].beta,
);
builder.connect(
ctl_challenges.challenges[i].gamma,
pi.ctl_challenges.challenges[i].gamma,
);
}
}
let state = challenger.compact(&mut builder);
for (&before, &s) in zip_eq(state.as_ref(), pis[0].challenger_state_before.as_ref()) {
builder.connect(before, s);
}
// Check that the challenger state is consistent between proofs.
for i in 1..NUM_TABLES {
for (&before, &after) in zip_eq(
pis[i].challenger_state_before.as_ref(),
pis[i - 1].challenger_state_after.as_ref(),
) {
builder.connect(before, after);
}
}
// Extra products to add to the looked last value.
// Only necessary for the Memory values.
let mut extra_looking_products =
vec![vec![builder.one(); stark_config.num_challenges]; NUM_TABLES];
// Memory
extra_looking_products[Table::Memory as usize] = (0..stark_config.num_challenges)
.map(|c| {
get_memory_extra_looking_products_circuit(
&mut builder,
&public_values,
ctl_challenges.challenges[c],
)
})
.collect_vec();
// Verify the CTL checks.
verify_cross_table_lookups_circuit::<F, D>(
&mut builder,
all_cross_table_lookups(),
pis.map(|p| p.ctl_zs_first),
extra_looking_products,
stark_config,
);
for (i, table_circuits) in by_table.iter().enumerate() {
let final_circuits = table_circuits.final_circuits();
for final_circuit in &final_circuits {
assert_eq!(
&final_circuit.common, inner_common_data[i],
"common_data mismatch"
);
}
let mut possible_vks = final_circuits
.into_iter()
.map(|c| builder.constant_verifier_data(&c.verifier_only))
.collect_vec();
// random_access_verifier_data expects a vector whose length is a power of two.
// To satisfy this, we will just add some duplicates of the first VK.
while !possible_vks.len().is_power_of_two() {
possible_vks.push(possible_vks[0].clone());
}
let inner_verifier_data =
builder.random_access_verifier_data(index_verifier_data[i], possible_vks);
builder.verify_proof::<C>(
&recursive_proofs[i],
&inner_verifier_data,
inner_common_data[i],
);
}
// We want EVM root proofs to have the exact same structure as aggregation proofs, so we add
// public inputs for cyclic verification, even though they'll be ignored.
let cyclic_vk = builder.add_verifier_data_public_inputs();
builder.add_gate(
ConstantGate::new(inner_common_data[0].config.num_constants),
vec![],
);
RootCircuitData {
circuit: builder.build::<C>(),
proof_with_pis: recursive_proofs,
index_verifier_data,
public_values,
cyclic_vk,
}
}
fn create_aggregation_circuit(
root: &RootCircuitData<F, C, D>,
) -> AggregationCircuitData<F, C, D> {
let mut builder = CircuitBuilder::<F, D>::new(root.circuit.common.config.clone());
let public_values = add_virtual_public_values(&mut builder);
let cyclic_vk = builder.add_verifier_data_public_inputs();
let lhs = Self::add_agg_child(&mut builder, root);
let rhs = Self::add_agg_child(&mut builder, root);
let lhs_public_values = lhs.public_values(&mut builder);
let rhs_public_values = rhs.public_values(&mut builder);
// Connect all block hash values
BlockHashesTarget::connect(
&mut builder,
public_values.block_hashes,
lhs_public_values.block_hashes,
);
BlockHashesTarget::connect(
&mut builder,
public_values.block_hashes,
rhs_public_values.block_hashes,
);
// Connect all block metadata values.
BlockMetadataTarget::connect(
&mut builder,
public_values.block_metadata,
lhs_public_values.block_metadata,
);
BlockMetadataTarget::connect(
&mut builder,
public_values.block_metadata,
rhs_public_values.block_metadata,
);
// Connect aggregation `trie_roots_before` with lhs `trie_roots_before`.
TrieRootsTarget::connect(
&mut builder,
public_values.trie_roots_before,
lhs_public_values.trie_roots_before,
);
// Connect aggregation `trie_roots_after` with rhs `trie_roots_after`.
TrieRootsTarget::connect(
&mut builder,
public_values.trie_roots_after,
rhs_public_values.trie_roots_after,
);
// Connect lhs `trie_roots_after` with rhs `trie_roots_before`.
TrieRootsTarget::connect(
&mut builder,
lhs_public_values.trie_roots_after,
rhs_public_values.trie_roots_before,
);
Self::connect_extra_public_values(
&mut builder,
&public_values.extra_block_data,
&lhs_public_values.extra_block_data,
&rhs_public_values.extra_block_data,
);
// Pad to match the root circuit's degree.
while log2_ceil(builder.num_gates()) < root.circuit.common.degree_bits() {
builder.add_gate(NoopGate, vec![]);
}
let circuit = builder.build::<C>();
AggregationCircuitData {
circuit,
lhs,
rhs,
public_values,
cyclic_vk,
}
}
fn connect_extra_public_values(
builder: &mut CircuitBuilder<F, D>,
pvs: &ExtraBlockDataTarget,
lhs: &ExtraBlockDataTarget,
rhs: &ExtraBlockDataTarget,
) {
// Connect genesis state root values.
for (&limb0, &limb1) in pvs
.genesis_state_trie_root
.iter()
.zip(&rhs.genesis_state_trie_root)
{
builder.connect(limb0, limb1);
}
for (&limb0, &limb1) in pvs
.genesis_state_trie_root
.iter()
.zip(&lhs.genesis_state_trie_root)
{
builder.connect(limb0, limb1);
}
// Connect the transaction number in public values to the lhs and rhs values correctly.
builder.connect(pvs.txn_number_before, lhs.txn_number_before);
builder.connect(pvs.txn_number_after, rhs.txn_number_after);
// Connect lhs `txn_number_after` with rhs `txn_number_before`.
builder.connect(lhs.txn_number_after, rhs.txn_number_before);
// Connect the gas used in public values to the lhs and rhs values correctly.
builder.connect(pvs.gas_used_before, lhs.gas_used_before);
builder.connect(pvs.gas_used_after, rhs.gas_used_after);
// Connect lhs `gas_used_after` with rhs `gas_used_before`.
builder.connect(lhs.gas_used_after, rhs.gas_used_before);
// Connect the `block_bloom` in public values to the lhs and rhs values correctly.
for (&limb0, &limb1) in pvs.block_bloom_after.iter().zip(&rhs.block_bloom_after) {
builder.connect(limb0, limb1);
}
for (&limb0, &limb1) in pvs.block_bloom_before.iter().zip(&lhs.block_bloom_before) {
builder.connect(limb0, limb1);
}
// Connect lhs `block_bloom_after` with rhs `block_bloom_before`.
for (&limb0, &limb1) in lhs.block_bloom_after.iter().zip(&rhs.block_bloom_before) {
builder.connect(limb0, limb1);
}
}
fn add_agg_child(
builder: &mut CircuitBuilder<F, D>,
root: &RootCircuitData<F, C, D>,
) -> AggregationChildTarget<D> {
let common = &root.circuit.common;
let root_vk = builder.constant_verifier_data(&root.circuit.verifier_only);
let is_agg = builder.add_virtual_bool_target_safe();
let agg_proof = builder.add_virtual_proof_with_pis(common);
let evm_proof = builder.add_virtual_proof_with_pis(common);
builder
.conditionally_verify_cyclic_proof::<C>(
is_agg, &agg_proof, &evm_proof, &root_vk, common,
)
.expect("Failed to build cyclic recursion circuit");
AggregationChildTarget {
is_agg,
agg_proof,
evm_proof,
}
}
fn create_block_circuit(agg: &AggregationCircuitData<F, C, D>) -> BlockCircuitData<F, C, D> {
// The block circuit is similar to the agg circuit; both verify two inner proofs.
// We need to adjust a few things, but it's easier than making a new CommonCircuitData.
let expected_common_data = CommonCircuitData {
fri_params: FriParams {
degree_bits: 14,
..agg.circuit.common.fri_params.clone()
},
..agg.circuit.common.clone()
};
let mut builder = CircuitBuilder::<F, D>::new(CircuitConfig::standard_recursion_config());
let public_values = add_virtual_public_values(&mut builder);
let has_parent_block = builder.add_virtual_bool_target_safe();
let parent_block_proof = builder.add_virtual_proof_with_pis(&expected_common_data);
let agg_root_proof = builder.add_virtual_proof_with_pis(&agg.circuit.common);
// Connect block hashes
Self::connect_block_hashes(&mut builder, &parent_block_proof, &agg_root_proof);
let parent_pv = PublicValuesTarget::from_public_inputs(&parent_block_proof.public_inputs);
let agg_pv = PublicValuesTarget::from_public_inputs(&agg_root_proof.public_inputs);
// Make connections between block proofs, and check initial and final block values.
Self::connect_block_proof(&mut builder, has_parent_block, &parent_pv, &agg_pv);
let cyclic_vk = builder.add_verifier_data_public_inputs();
builder
.conditionally_verify_cyclic_proof_or_dummy::<C>(
has_parent_block,
&parent_block_proof,
&expected_common_data,
)
.expect("Failed to build cyclic recursion circuit");
let agg_verifier_data = builder.constant_verifier_data(&agg.circuit.verifier_only);
builder.verify_proof::<C>(&agg_root_proof, &agg_verifier_data, &agg.circuit.common);
let circuit = builder.build::<C>();
BlockCircuitData {
circuit,
has_parent_block,
parent_block_proof,
agg_root_proof,
public_values,
cyclic_vk,
}
}
/// Connect the 256 block hashes between two blocks
fn connect_block_hashes(
builder: &mut CircuitBuilder<F, D>,
lhs: &ProofWithPublicInputsTarget<D>,
rhs: &ProofWithPublicInputsTarget<D>,
) {
let lhs_public_values = PublicValuesTarget::from_public_inputs(&lhs.public_inputs);
let rhs_public_values = PublicValuesTarget::from_public_inputs(&rhs.public_inputs);
for i in 0..255 {
for j in 0..8 {
builder.connect(
lhs_public_values.block_hashes.prev_hashes[8 * (i + 1) + j],
rhs_public_values.block_hashes.prev_hashes[8 * i + j],
);
}
}
let expected_hash = lhs_public_values.block_hashes.cur_hash;
let prev_block_hash = &rhs_public_values.block_hashes.prev_hashes[255 * 8..256 * 8];
for i in 0..expected_hash.len() {
builder.connect(expected_hash[i], prev_block_hash[i]);
}
}
fn connect_block_proof(
builder: &mut CircuitBuilder<F, D>,
has_parent_block: BoolTarget,
lhs: &PublicValuesTarget,
rhs: &PublicValuesTarget,
) {
// Between blocks, we only connect state tries.
for (&limb0, limb1) in lhs
.trie_roots_after
.state_root
.iter()
.zip(rhs.trie_roots_before.state_root)
{
builder.connect(limb0, limb1);
}
// Between blocks, the genesis state trie remains unchanged.
for (&limb0, limb1) in lhs
.extra_block_data
.genesis_state_trie_root
.iter()
.zip(rhs.extra_block_data.genesis_state_trie_root)
{
builder.connect(limb0, limb1);
}
// Connect block numbers.
let one = builder.one();
let prev_block_nb = builder.sub(rhs.block_metadata.block_number, one);
builder.connect(lhs.block_metadata.block_number, prev_block_nb);
// Check initial block values.
Self::connect_initial_values_block(builder, rhs);
// Connect intermediary values for gas_used and bloom filters to the block's final values. We only plug on the right, so there is no need to check the left-handside block.
Self::connect_final_block_values_to_intermediary(builder, rhs);
let has_not_parent_block = builder.sub(one, has_parent_block.target);
// Check that the genesis block number is 0.
let gen_block_constr = builder.mul(has_not_parent_block, lhs.block_metadata.block_number);
builder.assert_zero(gen_block_constr);
// Check that the genesis block has the predetermined state trie root in `ExtraBlockData`.
Self::connect_genesis_block(builder, rhs, has_not_parent_block);
}
fn connect_genesis_block(
builder: &mut CircuitBuilder<F, D>,
x: &PublicValuesTarget,
has_not_parent_block: Target,
) where
F: RichField + Extendable<D>,
{
for (&limb0, limb1) in x
.trie_roots_before
.state_root
.iter()
.zip(x.extra_block_data.genesis_state_trie_root)
{
let mut constr = builder.sub(limb0, limb1);
constr = builder.mul(has_not_parent_block, constr);
builder.assert_zero(constr);
}
}
fn connect_final_block_values_to_intermediary(
builder: &mut CircuitBuilder<F, D>,
x: &PublicValuesTarget,
) where
F: RichField + Extendable<D>,
{
builder.connect(
x.block_metadata.block_gas_used,
x.extra_block_data.gas_used_after,
);
for (&limb0, &limb1) in x
.block_metadata
.block_bloom
.iter()
.zip(&x.extra_block_data.block_bloom_after)
{
builder.connect(limb0, limb1);
}
}
fn connect_initial_values_block(builder: &mut CircuitBuilder<F, D>, x: &PublicValuesTarget)
where
F: RichField + Extendable<D>,
{
// The initial number of transactions is 0.
builder.assert_zero(x.extra_block_data.txn_number_before);
// The initial gas used is 0.
builder.assert_zero(x.extra_block_data.gas_used_before);
// The initial bloom filter is all zeroes.
for t in x.extra_block_data.block_bloom_before {
builder.assert_zero(t);
}
// The transactions and receipts tries are empty at the beginning of the block.
let initial_trie = HashedPartialTrie::from(Node::Empty).hash();
for (i, limb) in h256_limbs::<F>(initial_trie).into_iter().enumerate() {
let limb_target = builder.constant(limb);
builder.connect(x.trie_roots_before.transactions_root[i], limb_target);
builder.connect(x.trie_roots_before.receipts_root[i], limb_target);
}
}
/// Create a proof for each STARK, then combine them, eventually culminating in a root proof.
pub fn prove_root(
&self,
all_stark: &AllStark<F, D>,
config: &StarkConfig,
generation_inputs: GenerationInputs,
timing: &mut TimingTree,
) -> anyhow::Result<(ProofWithPublicInputs<F, C, D>, PublicValues)> {
let all_proof = prove::<F, C, D>(all_stark, config, generation_inputs, timing)?;
let mut root_inputs = PartialWitness::new();
for table in 0..NUM_TABLES {
let stark_proof = &all_proof.stark_proofs[table];
let original_degree_bits = stark_proof.proof.recover_degree_bits(config);
let table_circuits = &self.by_table[table];
let shrunk_proof = table_circuits
.by_stark_size
.get(&original_degree_bits)
.ok_or_else(|| {
anyhow::Error::msg(format!(
"Missing preprocessed circuits for {:?} table with size {}.",
Table::all()[table],
original_degree_bits,
))
})?
.shrink(stark_proof, &all_proof.ctl_challenges)?;
let index_verifier_data = table_circuits
.by_stark_size
.keys()
.position(|&size| size == original_degree_bits)
.unwrap();
root_inputs.set_target(
self.root.index_verifier_data[table],
F::from_canonical_usize(index_verifier_data),
);
root_inputs.set_proof_with_pis_target(&self.root.proof_with_pis[table], &shrunk_proof);
}
root_inputs.set_verifier_data_target(
&self.root.cyclic_vk,
&self.aggregation.circuit.verifier_only,
);
set_public_value_targets(
&mut root_inputs,
&self.root.public_values,
&all_proof.public_values,
)
.map_err(|_| {
anyhow::Error::msg("Invalid conversion when setting public values targets.")
})?;
let root_proof = self.root.circuit.prove(root_inputs)?;
Ok((root_proof, all_proof.public_values))
}
pub fn verify_root(&self, agg_proof: ProofWithPublicInputs<F, C, D>) -> anyhow::Result<()> {
self.root.circuit.verify(agg_proof)
}
pub fn prove_aggregation(
&self,
lhs_is_agg: bool,
lhs_proof: &ProofWithPublicInputs<F, C, D>,
lhs_public_values: PublicValues,
rhs_is_agg: bool,
rhs_proof: &ProofWithPublicInputs<F, C, D>,
rhs_public_values: PublicValues,
) -> anyhow::Result<(ProofWithPublicInputs<F, C, D>, PublicValues)> {
let mut agg_inputs = PartialWitness::new();
agg_inputs.set_bool_target(self.aggregation.lhs.is_agg, lhs_is_agg);
agg_inputs.set_proof_with_pis_target(&self.aggregation.lhs.agg_proof, lhs_proof);
agg_inputs.set_proof_with_pis_target(&self.aggregation.lhs.evm_proof, lhs_proof);
agg_inputs.set_bool_target(self.aggregation.rhs.is_agg, rhs_is_agg);
agg_inputs.set_proof_with_pis_target(&self.aggregation.rhs.agg_proof, rhs_proof);
agg_inputs.set_proof_with_pis_target(&self.aggregation.rhs.evm_proof, rhs_proof);
agg_inputs.set_verifier_data_target(
&self.aggregation.cyclic_vk,
&self.aggregation.circuit.verifier_only,
);
// Aggregates both `PublicValues` from the provided proofs into a single one.
let agg_public_values = PublicValues {
trie_roots_before: lhs_public_values.trie_roots_before,
trie_roots_after: rhs_public_values.trie_roots_after,
extra_block_data: ExtraBlockData {
genesis_state_trie_root: lhs_public_values.extra_block_data.genesis_state_trie_root,
txn_number_before: lhs_public_values.extra_block_data.txn_number_before,
txn_number_after: rhs_public_values.extra_block_data.txn_number_after,
gas_used_before: lhs_public_values.extra_block_data.gas_used_before,
gas_used_after: rhs_public_values.extra_block_data.gas_used_after,
block_bloom_before: lhs_public_values.extra_block_data.block_bloom_before,
block_bloom_after: rhs_public_values.extra_block_data.block_bloom_after,
},
block_metadata: rhs_public_values.block_metadata,
block_hashes: rhs_public_values.block_hashes,
};
set_public_value_targets(
&mut agg_inputs,
&self.aggregation.public_values,
&agg_public_values,
)
.map_err(|_| {
anyhow::Error::msg("Invalid conversion when setting public values targets.")
})?;
let aggregation_proof = self.aggregation.circuit.prove(agg_inputs)?;
Ok((aggregation_proof, agg_public_values))
}
pub fn verify_aggregation(
&self,
agg_proof: &ProofWithPublicInputs<F, C, D>,
) -> anyhow::Result<()> {
self.aggregation.circuit.verify(agg_proof.clone())?;
check_cyclic_proof_verifier_data(
agg_proof,
&self.aggregation.circuit.verifier_only,
&self.aggregation.circuit.common,
)
}
pub fn prove_block(
&self,
opt_parent_block_proof: Option<&ProofWithPublicInputs<F, C, D>>,
agg_root_proof: &ProofWithPublicInputs<F, C, D>,
public_values: PublicValues,
) -> anyhow::Result<(ProofWithPublicInputs<F, C, D>, PublicValues)> {
let mut block_inputs = PartialWitness::new();
block_inputs.set_bool_target(
self.block.has_parent_block,
opt_parent_block_proof.is_some(),
);
if let Some(parent_block_proof) = opt_parent_block_proof {
block_inputs
.set_proof_with_pis_target(&self.block.parent_block_proof, parent_block_proof);
} else {
// Initialize genesis_state_trie, state_root_after, and the previous block hashes for correct connection between blocks.
// Block number does not need to be initialized as genesis block is constrained to have number 0.
if public_values.trie_roots_before.state_root
!= public_values.extra_block_data.genesis_state_trie_root
{
return Err(anyhow::Error::msg(format!(
"Inconsistent pre-state for first block {:?} with genesis state {:?}.",
public_values.trie_roots_before.state_root,
public_values.extra_block_data.genesis_state_trie_root,
)));
}
// Initialize `state_root_after`.
let state_trie_root_after_keys =
TrieRootsTarget::SIZE..TrieRootsTarget::SIZE + TrieRootsTarget::HASH_SIZE;
let mut nonzero_pis = HashMap::new();
for (key, &value) in state_trie_root_after_keys
.zip_eq(&h256_limbs::<F>(public_values.trie_roots_before.state_root))
{
nonzero_pis.insert(key, value);
}
// Initialize the genesis state trie digest.
let genesis_state_trie_keys = TrieRootsTarget::SIZE * 2
+ BlockMetadataTarget::SIZE
+ BlockHashesTarget::BLOCK_HASHES_SIZE
..TrieRootsTarget::SIZE * 2
+ BlockMetadataTarget::SIZE
+ BlockHashesTarget::BLOCK_HASHES_SIZE
+ 8;
for (key, &value) in genesis_state_trie_keys.zip_eq(&h256_limbs::<F>(
public_values.extra_block_data.genesis_state_trie_root,
)) {
nonzero_pis.insert(key, value);
}
// Initialize block hashes.
let block_hashes_keys = TrieRootsTarget::SIZE * 2 + BlockMetadataTarget::SIZE
..TrieRootsTarget::SIZE * 2
+ BlockMetadataTarget::SIZE
+ BlockHashesTarget::BLOCK_HASHES_SIZE
- 8;
for i in 0..public_values.block_hashes.prev_hashes.len() - 1 {
let targets = h256_limbs::<F>(public_values.block_hashes.prev_hashes[i]);
for j in 0..8 {
nonzero_pis.insert(block_hashes_keys.start + 8 * (i + 1) + j, targets[j]);
}
}
let block_hashes_current_start = TrieRootsTarget::SIZE * 2
+ BlockMetadataTarget::SIZE
+ BlockHashesTarget::BLOCK_HASHES_SIZE
- 8;
let cur_targets = h256_limbs::<F>(public_values.block_hashes.prev_hashes[255]);
for i in 0..8 {
nonzero_pis.insert(block_hashes_current_start + i, cur_targets[i]);
}
block_inputs.set_proof_with_pis_target(
&self.block.parent_block_proof,
&cyclic_base_proof(
&self.block.circuit.common,
&self.block.circuit.verifier_only,
nonzero_pis,
),
);
}
block_inputs.set_proof_with_pis_target(&self.block.agg_root_proof, agg_root_proof);
block_inputs
.set_verifier_data_target(&self.block.cyclic_vk, &self.block.circuit.verifier_only);
set_public_value_targets(&mut block_inputs, &self.block.public_values, &public_values)
.map_err(|_| {
anyhow::Error::msg("Invalid conversion when setting public values targets.")
})?;
let block_proof = self.block.circuit.prove(block_inputs)?;
Ok((block_proof, public_values))
}
pub fn verify_block(&self, block_proof: &ProofWithPublicInputs<F, C, D>) -> anyhow::Result<()> {
self.block.circuit.verify(block_proof.clone())?;
check_cyclic_proof_verifier_data(
block_proof,
&self.block.circuit.verifier_only,
&self.block.circuit.common,
)
}
}
#[derive(Eq, PartialEq, Debug)]
pub struct RecursiveCircuitsForTable<F, C, const D: usize>
where
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
C::Hasher: AlgebraicHasher<F>,
{
/// A map from `log_2(height)` to a chain of shrinking recursion circuits starting at that
/// height.
by_stark_size: BTreeMap<usize, RecursiveCircuitsForTableSize<F, C, D>>,
}
impl<F, C, const D: usize> RecursiveCircuitsForTable<F, C, D>
where
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
C::Hasher: AlgebraicHasher<F>,
{
fn to_buffer(
&self,
buffer: &mut Vec<u8>,
gate_serializer: &dyn GateSerializer<F, D>,
generator_serializer: &dyn WitnessGeneratorSerializer<F, D>,
) -> IoResult<()> {
buffer.write_usize(self.by_stark_size.len())?;
for (&size, table) in &self.by_stark_size {
buffer.write_usize(size)?;
table.to_buffer(buffer, gate_serializer, generator_serializer)?;
}
Ok(())
}
fn from_buffer(
buffer: &mut Buffer,
gate_serializer: &dyn GateSerializer<F, D>,
generator_serializer: &dyn WitnessGeneratorSerializer<F, D>,
) -> IoResult<Self> {
let length = buffer.read_usize()?;
let mut by_stark_size = BTreeMap::new();
for _ in 0..length {
let key = buffer.read_usize()?;
let table = RecursiveCircuitsForTableSize::from_buffer(
buffer,
gate_serializer,
generator_serializer,
)?;
by_stark_size.insert(key, table);
}
Ok(Self { by_stark_size })
}
fn new<S: Stark<F, D>>(
table: Table,
stark: &S,
degree_bits_range: Range<usize>,
all_ctls: &[CrossTableLookup<F>],
stark_config: &StarkConfig,
) -> Self {
let by_stark_size = degree_bits_range
.map(|degree_bits| {
(
degree_bits,
RecursiveCircuitsForTableSize::new::<S>(
table,
stark,
degree_bits,
all_ctls,
stark_config,
),
)
})
.collect();
Self { by_stark_size }
}
fn expand<S: Stark<F, D>>(
&mut self,
table: Table,
stark: &S,
degree_bits_range: Range<usize>,
all_ctls: &[CrossTableLookup<F>],
stark_config: &StarkConfig,
) {
let new_ranges = degree_bits_range
.filter(|degree_bits| !self.by_stark_size.contains_key(degree_bits))
.collect_vec();
for degree_bits in new_ranges {
self.by_stark_size.insert(
degree_bits,
RecursiveCircuitsForTableSize::new::<S>(
table,
stark,
degree_bits,
all_ctls,
stark_config,
),
);
}
}
/// For each initial `degree_bits`, get the final circuit at the end of that shrinking chain.
/// Each of these final circuits should have degree `THRESHOLD_DEGREE_BITS`.
fn final_circuits(&self) -> Vec<&CircuitData<F, C, D>> {
self.by_stark_size
.values()
.map(|chain| {
chain
.shrinking_wrappers
.last()
.map(|wrapper| &wrapper.circuit)
.unwrap_or(&chain.initial_wrapper.circuit)
})
.collect()
}
}
/// A chain of shrinking wrapper circuits, ending with a final circuit with `degree_bits`
/// `THRESHOLD_DEGREE_BITS`.
#[derive(Eq, PartialEq, Debug)]
struct RecursiveCircuitsForTableSize<F, C, const D: usize>
where
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
C::Hasher: AlgebraicHasher<F>,
{
initial_wrapper: StarkWrapperCircuit<F, C, D>,
shrinking_wrappers: Vec<PlonkWrapperCircuit<F, C, D>>,
}
impl<F, C, const D: usize> RecursiveCircuitsForTableSize<F, C, D>
where
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
C::Hasher: AlgebraicHasher<F>,
{
fn to_buffer(
&self,
buffer: &mut Vec<u8>,
gate_serializer: &dyn GateSerializer<F, D>,
generator_serializer: &dyn WitnessGeneratorSerializer<F, D>,
) -> IoResult<()> {
buffer.write_usize(self.shrinking_wrappers.len())?;
if !self.shrinking_wrappers.is_empty() {
buffer.write_common_circuit_data(
&self.shrinking_wrappers[0].circuit.common,
gate_serializer,
)?;
}
for wrapper in &self.shrinking_wrappers {
buffer.write_prover_only_circuit_data(
&wrapper.circuit.prover_only,
generator_serializer,
&wrapper.circuit.common,
)?;
buffer.write_verifier_only_circuit_data(&wrapper.circuit.verifier_only)?;
buffer.write_target_proof_with_public_inputs(&wrapper.proof_with_pis_target)?;
}
self.initial_wrapper
.to_buffer(buffer, gate_serializer, generator_serializer)?;
Ok(())
}
fn from_buffer(
buffer: &mut Buffer,
gate_serializer: &dyn GateSerializer<F, D>,
generator_serializer: &dyn WitnessGeneratorSerializer<F, D>,
) -> IoResult<Self> {
let length = buffer.read_usize()?;
let mut shrinking_wrappers = Vec::with_capacity(length);
if length != 0 {
let common = buffer.read_common_circuit_data(gate_serializer)?;
for _ in 0..length {
let prover_only =
buffer.read_prover_only_circuit_data(generator_serializer, &common)?;
let verifier_only = buffer.read_verifier_only_circuit_data()?;
let proof_with_pis_target = buffer.read_target_proof_with_public_inputs()?;
shrinking_wrappers.push(PlonkWrapperCircuit {
circuit: CircuitData {
common: common.clone(),
prover_only,
verifier_only,
},
proof_with_pis_target,
})
}
};
let initial_wrapper =
StarkWrapperCircuit::from_buffer(buffer, gate_serializer, generator_serializer)?;
Ok(Self {
initial_wrapper,
shrinking_wrappers,
})
}
fn new<S: Stark<F, D>>(
table: Table,
stark: &S,
degree_bits: usize,
all_ctls: &[CrossTableLookup<F>],
stark_config: &StarkConfig,
) -> Self {
let initial_wrapper = recursive_stark_circuit(
table,
stark,
degree_bits,
all_ctls,
stark_config,
&shrinking_config(),
THRESHOLD_DEGREE_BITS,
);
let mut shrinking_wrappers = vec![];
// Shrinking recursion loop.
loop {
let last = shrinking_wrappers
.last()
.map(|wrapper: &PlonkWrapperCircuit<F, C, D>| &wrapper.circuit)
.unwrap_or(&initial_wrapper.circuit);
let last_degree_bits = last.common.degree_bits();
assert!(last_degree_bits >= THRESHOLD_DEGREE_BITS);
if last_degree_bits == THRESHOLD_DEGREE_BITS {
break;
}
let mut builder = CircuitBuilder::new(shrinking_config());
let proof_with_pis_target = builder.add_virtual_proof_with_pis(&last.common);
let last_vk = builder.constant_verifier_data(&last.verifier_only);
builder.verify_proof::<C>(&proof_with_pis_target, &last_vk, &last.common);
builder.register_public_inputs(&proof_with_pis_target.public_inputs); // carry PIs forward
add_common_recursion_gates(&mut builder);
let circuit = builder.build::<C>();
assert!(
circuit.common.degree_bits() < last_degree_bits,
"Couldn't shrink to expected recursion threshold of 2^{}; stalled at 2^{}",
THRESHOLD_DEGREE_BITS,
circuit.common.degree_bits()
);
shrinking_wrappers.push(PlonkWrapperCircuit {
circuit,
proof_with_pis_target,
});
}
Self {
initial_wrapper,
shrinking_wrappers,
}
}
fn shrink(
&self,
stark_proof_with_metadata: &StarkProofWithMetadata<F, C, D>,
ctl_challenges: &GrandProductChallengeSet<F>,
) -> anyhow::Result<ProofWithPublicInputs<F, C, D>> {
let mut proof = self
.initial_wrapper
.prove(stark_proof_with_metadata, ctl_challenges)?;
for wrapper_circuit in &self.shrinking_wrappers {
proof = wrapper_circuit.prove(&proof)?;
}
Ok(proof)
}
}
/// Our usual recursion threshold is 2^12 gates, but for these shrinking circuits, we use a few more
/// gates for a constant inner VK and for public inputs. This pushes us over the threshold to 2^13.
/// As long as we're at 2^13 gates, we might as well use a narrower witness.
fn shrinking_config() -> CircuitConfig {
CircuitConfig {
num_routed_wires: 40,
..CircuitConfig::standard_recursion_config()
}
}