plonky2/evm/src/cross_table_lookup.rs
Robin Salen e502a0dfb1
Make CTLs more generic (#1493)
* Make number of tables generic

* Remove dependency on Table in the CTL module

* Remove needless conversion

* Remove more needless conversion

* Clippy

* Apply reviews
2024-02-01 11:41:42 -05:00

1762 lines
66 KiB
Rust

//! This crate provides support for cross-table lookups.
//!
//! If a STARK S_1 calls an operation that is carried out by another STARK S_2,
//! S_1 provides the inputs to S_2 and reads the output from S_1. To ensure that
//! the operation was correctly carried out, we must check that the provided inputs
//! and outputs are correctly read. Cross-table lookups carry out that check.
//!
//! To achieve this, smaller CTL tables are created on both sides: looking and looked tables.
//! In our example, we create a table S_1' comprised of columns -- or linear combinations
//! of columns -- of S_1, and rows that call operations carried out in S_2. We also create a
//! table S_2' comprised of columns -- or linear combinations od columns -- of S_2 and rows
//! that carry out the operations needed by other STARKs. Then, S_1' is a looking table for
//! the looked S_2', since we want to check that the operation outputs in S_1' are indeeed in S_2'.
//! Furthermore, the concatenation of all tables looking into S_2' must be equal to S_2'.
//!
//! To achieve this, we construct, for each table, a permutation polynomial Z(x).
//! Z(x) is computed as the product of all its column combinations.
//! To check it was correctly constructed, we check:
//! - Z(gw) = Z(w) * combine(w) where combine(w) is the column combination at point w.
//! - Z(g^(n-1)) = combine(1).
//! - The verifier also checks that the product of looking table Z polynomials is equal
//! to the associated looked table Z polynomial.
//! Note that the first two checks are written that way because Z polynomials are computed
//! upside down for convenience.
//!
//! Additionally, we support cross-table lookups over two rows. The permutation principle
//! is similar, but we provide not only `local_values` but also `next_values` -- corresponding to
//! the current and next row values -- when computing the linear combinations.
use core::borrow::Borrow;
use core::cmp::min;
use core::fmt::Debug;
use core::iter::repeat;
use anyhow::{ensure, Result};
use hashbrown::HashMap;
use itertools::Itertools;
use plonky2::field::batch_util::{batch_add_inplace, batch_multiply_inplace};
use plonky2::field::extension::{Extendable, FieldExtension};
use plonky2::field::packed::PackedField;
use plonky2::field::polynomial::PolynomialValues;
use plonky2::field::types::Field;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::challenger::{Challenger, RecursiveChallenger};
use plonky2::iop::ext_target::ExtensionTarget;
use plonky2::iop::target::Target;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::config::{AlgebraicHasher, GenericConfig, Hasher};
use plonky2::plonk::plonk_common::{
reduce_with_powers, reduce_with_powers_circuit, reduce_with_powers_ext_circuit,
};
use plonky2::util::ceil_div_usize;
use plonky2::util::serialization::{Buffer, IoResult, Read, Write};
use crate::all_stark::Table;
use crate::config::StarkConfig;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::evaluation_frame::StarkEvaluationFrame;
use crate::proof::{StarkProofTarget, StarkProofWithMetadata};
use crate::stark::Stark;
/// Represent two linear combination of columns, corresponding to the current and next row values.
/// Each linear combination is represented as:
/// - a vector of `(usize, F)` corresponding to the column number and the associated multiplicand
/// - the constant of the linear combination.
#[derive(Clone, Debug)]
pub(crate) struct Column<F: Field> {
linear_combination: Vec<(usize, F)>,
next_row_linear_combination: Vec<(usize, F)>,
constant: F,
}
impl<F: Field> Column<F> {
/// Returns the representation of a single column in the current row.
pub(crate) fn single(c: usize) -> Self {
Self {
linear_combination: vec![(c, F::ONE)],
next_row_linear_combination: vec![],
constant: F::ZERO,
}
}
/// Returns multiple single columns in the current row.
pub(crate) fn singles<I: IntoIterator<Item = impl Borrow<usize>>>(
cs: I,
) -> impl Iterator<Item = Self> {
cs.into_iter().map(|c| Self::single(*c.borrow()))
}
/// Returns the representation of a single column in the next row.
pub(crate) fn single_next_row(c: usize) -> Self {
Self {
linear_combination: vec![],
next_row_linear_combination: vec![(c, F::ONE)],
constant: F::ZERO,
}
}
/// Returns multiple single columns for the next row.
pub(crate) fn singles_next_row<I: IntoIterator<Item = impl Borrow<usize>>>(
cs: I,
) -> impl Iterator<Item = Self> {
cs.into_iter().map(|c| Self::single_next_row(*c.borrow()))
}
/// Returns a linear combination corresponding to a constant.
pub(crate) fn constant(constant: F) -> Self {
Self {
linear_combination: vec![],
next_row_linear_combination: vec![],
constant,
}
}
/// Returns a linear combination corresponding to 0.
pub(crate) fn zero() -> Self {
Self::constant(F::ZERO)
}
/// Returns a linear combination corresponding to 1.
pub(crate) fn one() -> Self {
Self::constant(F::ONE)
}
/// Given an iterator of `(usize, F)` and a constant, returns the association linear combination of columns for the current row.
pub(crate) fn linear_combination_with_constant<I: IntoIterator<Item = (usize, F)>>(
iter: I,
constant: F,
) -> Self {
let v = iter.into_iter().collect::<Vec<_>>();
assert!(!v.is_empty());
debug_assert_eq!(
v.iter().map(|(c, _)| c).unique().count(),
v.len(),
"Duplicate columns."
);
Self {
linear_combination: v,
next_row_linear_combination: vec![],
constant,
}
}
/// Given an iterator of `(usize, F)` and a constant, returns the associated linear combination of columns for the current and the next rows.
pub(crate) fn linear_combination_and_next_row_with_constant<
I: IntoIterator<Item = (usize, F)>,
>(
iter: I,
next_row_iter: I,
constant: F,
) -> Self {
let v = iter.into_iter().collect::<Vec<_>>();
let next_row_v = next_row_iter.into_iter().collect::<Vec<_>>();
assert!(!v.is_empty() || !next_row_v.is_empty());
debug_assert_eq!(
v.iter().map(|(c, _)| c).unique().count(),
v.len(),
"Duplicate columns."
);
debug_assert_eq!(
next_row_v.iter().map(|(c, _)| c).unique().count(),
next_row_v.len(),
"Duplicate columns."
);
Self {
linear_combination: v,
next_row_linear_combination: next_row_v,
constant,
}
}
/// Returns a linear combination of columns, with no additional constant.
pub(crate) fn linear_combination<I: IntoIterator<Item = (usize, F)>>(iter: I) -> Self {
Self::linear_combination_with_constant(iter, F::ZERO)
}
/// Given an iterator of columns (c_0, ..., c_n) containing bits in little endian order:
/// returns the representation of c_0 + 2 * c_1 + ... + 2^n * c_n.
pub(crate) fn le_bits<I: IntoIterator<Item = impl Borrow<usize>>>(cs: I) -> Self {
Self::linear_combination(cs.into_iter().map(|c| *c.borrow()).zip(F::TWO.powers()))
}
/// Given an iterator of columns (c_0, ..., c_n) containing bits in little endian order:
/// returns the representation of c_0 + 2 * c_1 + ... + 2^n * c_n + k where `k` is an
/// additional constant.
pub(crate) fn le_bits_with_constant<I: IntoIterator<Item = impl Borrow<usize>>>(
cs: I,
constant: F,
) -> Self {
Self::linear_combination_with_constant(
cs.into_iter().map(|c| *c.borrow()).zip(F::TWO.powers()),
constant,
)
}
/// Given an iterator of columns (c_0, ..., c_n) containing bytes in little endian order:
/// returns the representation of c_0 + 256 * c_1 + ... + 256^n * c_n.
pub(crate) fn le_bytes<I: IntoIterator<Item = impl Borrow<usize>>>(cs: I) -> Self {
Self::linear_combination(
cs.into_iter()
.map(|c| *c.borrow())
.zip(F::from_canonical_u16(256).powers()),
)
}
/// Given an iterator of columns, returns the representation of their sum.
pub(crate) fn sum<I: IntoIterator<Item = impl Borrow<usize>>>(cs: I) -> Self {
Self::linear_combination(cs.into_iter().map(|c| *c.borrow()).zip(repeat(F::ONE)))
}
/// Given the column values for the current row, returns the evaluation of the linear combination.
pub(crate) fn eval<FE, P, const D: usize>(&self, v: &[P]) -> P
where
FE: FieldExtension<D, BaseField = F>,
P: PackedField<Scalar = FE>,
{
self.linear_combination
.iter()
.map(|&(c, f)| v[c] * FE::from_basefield(f))
.sum::<P>()
+ FE::from_basefield(self.constant)
}
/// Given the column values for the current and next rows, evaluates the current and next linear combinations and returns their sum.
pub(crate) fn eval_with_next<FE, P, const D: usize>(&self, v: &[P], next_v: &[P]) -> P
where
FE: FieldExtension<D, BaseField = F>,
P: PackedField<Scalar = FE>,
{
self.linear_combination
.iter()
.map(|&(c, f)| v[c] * FE::from_basefield(f))
.sum::<P>()
+ self
.next_row_linear_combination
.iter()
.map(|&(c, f)| next_v[c] * FE::from_basefield(f))
.sum::<P>()
+ FE::from_basefield(self.constant)
}
/// Evaluate on a row of a table given in column-major form.
pub(crate) fn eval_table(&self, table: &[PolynomialValues<F>], row: usize) -> F {
let mut res = self
.linear_combination
.iter()
.map(|&(c, f)| table[c].values[row] * f)
.sum::<F>()
+ self.constant;
// If we access the next row at the last row, for sanity, we consider the next row's values to be 0.
// If CTLs are correctly written, the filter should be 0 in that case anyway.
if !self.next_row_linear_combination.is_empty() && row < table[0].values.len() - 1 {
res += self
.next_row_linear_combination
.iter()
.map(|&(c, f)| table[c].values[row + 1] * f)
.sum::<F>();
}
res
}
/// Evaluates the column on all rows.
pub(crate) fn eval_all_rows(&self, table: &[PolynomialValues<F>]) -> Vec<F> {
let length = table[0].len();
(0..length)
.map(|row| self.eval_table(table, row))
.collect::<Vec<F>>()
}
/// Circuit version of `eval`: Given a row's targets, returns their linear combination.
pub(crate) fn eval_circuit<const D: usize>(
&self,
builder: &mut CircuitBuilder<F, D>,
v: &[ExtensionTarget<D>],
) -> ExtensionTarget<D>
where
F: RichField + Extendable<D>,
{
let pairs = self
.linear_combination
.iter()
.map(|&(c, f)| {
(
v[c],
builder.constant_extension(F::Extension::from_basefield(f)),
)
})
.collect::<Vec<_>>();
let constant = builder.constant_extension(F::Extension::from_basefield(self.constant));
builder.inner_product_extension(F::ONE, constant, pairs)
}
/// Circuit version of `eval_with_next`:
/// Given the targets of the current and next row, returns the sum of their linear combinations.
pub(crate) fn eval_with_next_circuit<const D: usize>(
&self,
builder: &mut CircuitBuilder<F, D>,
v: &[ExtensionTarget<D>],
next_v: &[ExtensionTarget<D>],
) -> ExtensionTarget<D>
where
F: RichField + Extendable<D>,
{
let mut pairs = self
.linear_combination
.iter()
.map(|&(c, f)| {
(
v[c],
builder.constant_extension(F::Extension::from_basefield(f)),
)
})
.collect::<Vec<_>>();
let next_row_pairs = self.next_row_linear_combination.iter().map(|&(c, f)| {
(
next_v[c],
builder.constant_extension(F::Extension::from_basefield(f)),
)
});
pairs.extend(next_row_pairs);
let constant = builder.constant_extension(F::Extension::from_basefield(self.constant));
builder.inner_product_extension(F::ONE, constant, pairs)
}
}
/// Represents a CTL filter, which evaluates to 1 if the row must be considered for the CTL and 0 otherwise.
/// It's an arbitrary degree 2 combination of columns: `products` are the degree 2 terms, and `constants` are
/// the degree 1 terms.
#[derive(Clone, Debug)]
pub(crate) struct Filter<F: Field> {
products: Vec<(Column<F>, Column<F>)>,
constants: Vec<Column<F>>,
}
impl<F: Field> Filter<F> {
pub(crate) fn new(products: Vec<(Column<F>, Column<F>)>, constants: Vec<Column<F>>) -> Self {
Self {
products,
constants,
}
}
/// Returns a filter made of a single column.
pub(crate) fn new_simple(col: Column<F>) -> Self {
Self {
products: vec![],
constants: vec![col],
}
}
/// Given the column values for the current and next rows, evaluates the filter.
pub(crate) fn eval_filter<FE, P, const D: usize>(&self, v: &[P], next_v: &[P]) -> P
where
FE: FieldExtension<D, BaseField = F>,
P: PackedField<Scalar = FE>,
{
self.products
.iter()
.map(|(col1, col2)| col1.eval_with_next(v, next_v) * col2.eval_with_next(v, next_v))
.sum::<P>()
+ self
.constants
.iter()
.map(|col| col.eval_with_next(v, next_v))
.sum::<P>()
}
/// Circuit version of `eval_filter`:
/// Given the column values for the current and next rows, evaluates the filter.
pub(crate) fn eval_filter_circuit<const D: usize>(
&self,
builder: &mut CircuitBuilder<F, D>,
v: &[ExtensionTarget<D>],
next_v: &[ExtensionTarget<D>],
) -> ExtensionTarget<D>
where
F: RichField + Extendable<D>,
{
let prods = self
.products
.iter()
.map(|(col1, col2)| {
let col1_eval = col1.eval_with_next_circuit(builder, v, next_v);
let col2_eval = col2.eval_with_next_circuit(builder, v, next_v);
builder.mul_extension(col1_eval, col2_eval)
})
.collect::<Vec<_>>();
let consts = self
.constants
.iter()
.map(|col| col.eval_with_next_circuit(builder, v, next_v))
.collect::<Vec<_>>();
let prods = builder.add_many_extension(prods);
let consts = builder.add_many_extension(consts);
builder.add_extension(prods, consts)
}
/// Evaluate on a row of a table given in column-major form.
pub(crate) fn eval_table(&self, table: &[PolynomialValues<F>], row: usize) -> F {
self.products
.iter()
.map(|(col1, col2)| col1.eval_table(table, row) * col2.eval_table(table, row))
.sum::<F>()
+ self
.constants
.iter()
.map(|col| col.eval_table(table, row))
.sum()
}
pub(crate) fn eval_all_rows(&self, table: &[PolynomialValues<F>]) -> Vec<F> {
let length = table[0].len();
(0..length)
.map(|row| self.eval_table(table, row))
.collect::<Vec<F>>()
}
}
/// An alias for `usize`, to represent the index of a STARK table in a multi-STARK setting.
pub(crate) type TableIdx = usize;
/// A `table` index with a linear combination of columns and a filter.
/// `filter` is used to determine the rows to select in `table`.
/// `columns` represents linear combinations of the columns of `table`.
#[derive(Clone, Debug)]
pub(crate) struct TableWithColumns<F: Field> {
table: TableIdx,
columns: Vec<Column<F>>,
pub(crate) filter: Option<Filter<F>>,
}
impl<F: Field> TableWithColumns<F> {
/// Generates a new `TableWithColumns` given a `table` index, a linear combination of columns `columns` and a `filter`.
pub(crate) fn new(table: TableIdx, columns: Vec<Column<F>>, filter: Option<Filter<F>>) -> Self {
Self {
table,
columns,
filter,
}
}
}
/// Cross-table lookup data consisting in the lookup table (`looked_table`) and all the tables that look into `looked_table` (`looking_tables`).
/// Each `looking_table` corresponds to a STARK's table whose rows have been filtered out and whose columns have been through a linear combination (see `eval_table`). The concatenation of those smaller tables should result in the `looked_table`.
#[derive(Clone)]
pub struct CrossTableLookup<F: Field> {
/// Column linear combinations for all tables that are looking into the current table.
pub(crate) looking_tables: Vec<TableWithColumns<F>>,
/// Column linear combination for the current table.
pub(crate) looked_table: TableWithColumns<F>,
}
impl<F: Field> CrossTableLookup<F> {
/// Creates a new `CrossTableLookup` given some looking tables and a looked table.
/// All tables should have the same width.
pub(crate) fn new(
looking_tables: Vec<TableWithColumns<F>>,
looked_table: TableWithColumns<F>,
) -> Self {
assert!(looking_tables
.iter()
.all(|twc| twc.columns.len() == looked_table.columns.len()));
Self {
looking_tables,
looked_table,
}
}
/// Given a table, returns:
/// - the total number of helper columns for this table, over all Cross-table lookups,
/// - the total number of z polynomials for this table, over all Cross-table lookups,
/// - the number of helper columns for this table, for each Cross-table lookup.
pub(crate) fn num_ctl_helpers_zs_all(
ctls: &[Self],
table: TableIdx,
num_challenges: usize,
constraint_degree: usize,
) -> (usize, usize, Vec<usize>) {
let mut num_helpers = 0;
let mut num_ctls = 0;
let mut num_helpers_by_ctl = vec![0; ctls.len()];
for (i, ctl) in ctls.iter().enumerate() {
let all_tables = std::iter::once(&ctl.looked_table).chain(&ctl.looking_tables);
let num_appearances = all_tables.filter(|twc| twc.table == table).count();
let is_helpers = num_appearances > 2;
if is_helpers {
num_helpers_by_ctl[i] = ceil_div_usize(num_appearances, constraint_degree - 1);
num_helpers += num_helpers_by_ctl[i];
}
if num_appearances > 0 {
num_ctls += 1;
}
}
(
num_helpers * num_challenges,
num_ctls * num_challenges,
num_helpers_by_ctl,
)
}
}
/// Cross-table lookup data for one table.
#[derive(Clone, Default)]
pub(crate) struct CtlData<'a, F: Field> {
/// Data associated with all Z(x) polynomials for one table.
pub(crate) zs_columns: Vec<CtlZData<'a, F>>,
}
/// Cross-table lookup data associated with one Z(x) polynomial.
/// One Z(x) polynomial can be associated to multiple tables,
/// built from the same STARK.
#[derive(Clone)]
pub(crate) struct CtlZData<'a, F: Field> {
/// Helper columns to verify the Z polynomial values.
pub(crate) helper_columns: Vec<PolynomialValues<F>>,
/// Z polynomial values.
pub(crate) z: PolynomialValues<F>,
/// Cross-table lookup challenge.
pub(crate) challenge: GrandProductChallenge<F>,
/// Vector of column linear combinations for the current tables.
pub(crate) columns: Vec<&'a [Column<F>]>,
/// Vector of filter columns for the current table.
/// Each filter evaluates to either 1 or 0.
pub(crate) filter: Vec<Option<Filter<F>>>,
}
impl<'a, F: Field> CtlData<'a, F> {
/// Returns the number of cross-table lookup polynomials.
pub(crate) fn len(&self) -> usize {
self.zs_columns.len()
}
/// Returns whether there are no cross-table lookups.
pub(crate) fn is_empty(&self) -> bool {
self.zs_columns.is_empty()
}
/// Returns all the cross-table lookup helper polynomials.
pub(crate) fn ctl_helper_polys(&self) -> Vec<PolynomialValues<F>> {
let num_polys = self
.zs_columns
.iter()
.fold(0, |acc, z| acc + z.helper_columns.len());
let mut res = Vec::with_capacity(num_polys);
for z in &self.zs_columns {
res.extend(z.helper_columns.clone());
}
res
}
/// Returns all the Z cross-table-lookup polynomials.
pub(crate) fn ctl_z_polys(&self) -> Vec<PolynomialValues<F>> {
let mut res = Vec::with_capacity(self.zs_columns.len());
for z in &self.zs_columns {
res.push(z.z.clone());
}
res
}
/// Returns the number of helper columns for each STARK in each
/// `CtlZData`.
pub(crate) fn num_ctl_helper_polys(&self) -> Vec<usize> {
let mut res = Vec::with_capacity(self.zs_columns.len());
for z in &self.zs_columns {
res.push(z.helper_columns.len());
}
res
}
}
/// Randomness for a single instance of a permutation check protocol.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub(crate) struct GrandProductChallenge<T: Copy + Eq + PartialEq + Debug> {
/// Randomness used to combine multiple columns into one.
pub(crate) beta: T,
/// Random offset that's added to the beta-reduced column values.
pub(crate) gamma: T,
}
impl<F: Field> GrandProductChallenge<F> {
pub(crate) fn combine<'a, FE, P, T: IntoIterator<Item = &'a P>, const D2: usize>(
&self,
terms: T,
) -> P
where
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>,
T::IntoIter: DoubleEndedIterator,
{
reduce_with_powers(terms, FE::from_basefield(self.beta)) + FE::from_basefield(self.gamma)
}
}
impl GrandProductChallenge<Target> {
pub(crate) fn combine_circuit<F: RichField + Extendable<D>, const D: usize>(
&self,
builder: &mut CircuitBuilder<F, D>,
terms: &[ExtensionTarget<D>],
) -> ExtensionTarget<D> {
let reduced = reduce_with_powers_ext_circuit(builder, terms, self.beta);
let gamma = builder.convert_to_ext(self.gamma);
builder.add_extension(reduced, gamma)
}
}
impl GrandProductChallenge<Target> {
pub(crate) fn combine_base_circuit<F: RichField + Extendable<D>, const D: usize>(
&self,
builder: &mut CircuitBuilder<F, D>,
terms: &[Target],
) -> Target {
let reduced = reduce_with_powers_circuit(builder, terms, self.beta);
builder.add(reduced, self.gamma)
}
}
/// Like `PermutationChallenge`, but with `num_challenges` copies to boost soundness.
#[derive(Clone, Eq, PartialEq, Debug)]
pub struct GrandProductChallengeSet<T: Copy + Eq + PartialEq + Debug> {
pub(crate) challenges: Vec<GrandProductChallenge<T>>,
}
impl GrandProductChallengeSet<Target> {
pub(crate) fn to_buffer(&self, buffer: &mut Vec<u8>) -> IoResult<()> {
buffer.write_usize(self.challenges.len())?;
for challenge in &self.challenges {
buffer.write_target(challenge.beta)?;
buffer.write_target(challenge.gamma)?;
}
Ok(())
}
pub(crate) fn from_buffer(buffer: &mut Buffer) -> IoResult<Self> {
let length = buffer.read_usize()?;
let mut challenges = Vec::with_capacity(length);
for _ in 0..length {
challenges.push(GrandProductChallenge {
beta: buffer.read_target()?,
gamma: buffer.read_target()?,
});
}
Ok(GrandProductChallengeSet { challenges })
}
}
fn get_grand_product_challenge<F: RichField, H: Hasher<F>>(
challenger: &mut Challenger<F, H>,
) -> GrandProductChallenge<F> {
let beta = challenger.get_challenge();
let gamma = challenger.get_challenge();
GrandProductChallenge { beta, gamma }
}
pub(crate) fn get_grand_product_challenge_set<F: RichField, H: Hasher<F>>(
challenger: &mut Challenger<F, H>,
num_challenges: usize,
) -> GrandProductChallengeSet<F> {
let challenges = (0..num_challenges)
.map(|_| get_grand_product_challenge(challenger))
.collect();
GrandProductChallengeSet { challenges }
}
fn get_grand_product_challenge_target<
F: RichField + Extendable<D>,
H: AlgebraicHasher<F>,
const D: usize,
>(
builder: &mut CircuitBuilder<F, D>,
challenger: &mut RecursiveChallenger<F, H, D>,
) -> GrandProductChallenge<Target> {
let beta = challenger.get_challenge(builder);
let gamma = challenger.get_challenge(builder);
GrandProductChallenge { beta, gamma }
}
pub(crate) fn get_grand_product_challenge_set_target<
F: RichField + Extendable<D>,
H: AlgebraicHasher<F>,
const D: usize,
>(
builder: &mut CircuitBuilder<F, D>,
challenger: &mut RecursiveChallenger<F, H, D>,
num_challenges: usize,
) -> GrandProductChallengeSet<Target> {
let challenges = (0..num_challenges)
.map(|_| get_grand_product_challenge_target(builder, challenger))
.collect();
GrandProductChallengeSet { challenges }
}
/// Returns the number of helper columns for each `Table`.
pub(crate) fn num_ctl_helper_columns_by_table<F: Field, const N: usize>(
ctls: &[CrossTableLookup<F>],
constraint_degree: usize,
) -> Vec<[usize; N]> {
let mut res = vec![[0; N]; ctls.len()];
for (i, ctl) in ctls.iter().enumerate() {
let CrossTableLookup {
looking_tables,
looked_table,
} = ctl;
let mut num_by_table = [0; N];
let grouped_lookups = looking_tables.iter().group_by(|&a| a.table);
for (table, group) in grouped_lookups.into_iter() {
let sum = group.count();
if sum > 2 {
// We only need helper columns if there are more than 2 columns.
num_by_table[table] = ceil_div_usize(sum, constraint_degree - 1);
}
}
res[i] = num_by_table;
}
res
}
/// Generates all the cross-table lookup data, for all tables.
/// - `trace_poly_values` corresponds to the trace values for all tables.
/// - `cross_table_lookups` corresponds to all the cross-table lookups, i.e. the looked and looking tables, as described in `CrossTableLookup`.
/// - `ctl_challenges` corresponds to the challenges used for CTLs.
/// - `constraint_degree` is the maximal constraint degree for the table.
/// For each `CrossTableLookup`, and each looking/looked table, the partial products for the CTL are computed, and added to the said table's `CtlZData`.
pub(crate) fn cross_table_lookup_data<'a, F: RichField, const D: usize, const N: usize>(
trace_poly_values: &[Vec<PolynomialValues<F>>; N],
cross_table_lookups: &'a [CrossTableLookup<F>],
ctl_challenges: &GrandProductChallengeSet<F>,
constraint_degree: usize,
) -> [CtlData<'a, F>; N] {
let mut ctl_data_per_table = [0; N].map(|_| CtlData::default());
for CrossTableLookup {
looking_tables,
looked_table,
} in cross_table_lookups
{
log::debug!("Processing CTL for {:?}", looked_table.table);
for &challenge in &ctl_challenges.challenges {
let helper_zs_looking = ctl_helper_zs_cols(
trace_poly_values,
looking_tables.clone(),
challenge,
constraint_degree,
);
let mut z_looked = partial_sums(
&trace_poly_values[looked_table.table],
&[(&looked_table.columns, &looked_table.filter)],
challenge,
constraint_degree,
);
for (table, helpers_zs) in helper_zs_looking {
let num_helpers = helpers_zs.len() - 1;
let count = looking_tables
.iter()
.filter(|looking_table| looking_table.table == table)
.count();
let cols_filts = looking_tables.iter().filter_map(|looking_table| {
if looking_table.table == table {
Some((&looking_table.columns, &looking_table.filter))
} else {
None
}
});
let mut columns = Vec::with_capacity(count);
let mut filter = Vec::with_capacity(count);
for (col, filt) in cols_filts {
columns.push(&col[..]);
filter.push(filt.clone());
}
ctl_data_per_table[table].zs_columns.push(CtlZData {
helper_columns: helpers_zs[..num_helpers].to_vec(),
z: helpers_zs[num_helpers].clone(),
challenge,
columns,
filter,
});
}
// There is no helper column for the looking table.
let looked_poly = z_looked[0].clone();
ctl_data_per_table[looked_table.table]
.zs_columns
.push(CtlZData {
helper_columns: vec![],
z: looked_poly,
challenge,
columns: vec![&looked_table.columns[..]],
filter: vec![looked_table.filter.clone()],
});
}
}
ctl_data_per_table
}
type ColumnFilter<'a, F> = (&'a [Column<F>], &'a Option<Filter<F>>);
/// Given a STARK's trace, and the data associated to one lookup (either CTL or range check),
/// returns the associated helper polynomials.
pub(crate) fn get_helper_cols<F: Field>(
trace: &[PolynomialValues<F>],
degree: usize,
columns_filters: &[ColumnFilter<F>],
challenge: GrandProductChallenge<F>,
constraint_degree: usize,
) -> Vec<PolynomialValues<F>> {
let num_helper_columns = ceil_div_usize(columns_filters.len(), constraint_degree - 1);
let mut helper_columns = Vec::with_capacity(num_helper_columns);
let mut filter_index = 0;
for mut cols_filts in &columns_filters.iter().chunks(constraint_degree - 1) {
let (first_col, first_filter) = cols_filts.next().unwrap();
let mut filter_col = Vec::with_capacity(degree);
let first_combined = (0..degree)
.map(|d| {
let f = if let Some(filter) = first_filter {
let f = filter.eval_table(trace, d);
filter_col.push(f);
f
} else {
filter_col.push(F::ONE);
F::ONE
};
if f.is_one() {
let evals = first_col
.iter()
.map(|c| c.eval_table(trace, d))
.collect::<Vec<F>>();
challenge.combine(evals.iter())
} else {
assert_eq!(f, F::ZERO, "Non-binary filter?");
// Dummy value. Cannot be zero since it will be batch-inverted.
F::ONE
}
})
.collect::<Vec<F>>();
let mut acc = F::batch_multiplicative_inverse(&first_combined);
for d in 0..degree {
if filter_col[d].is_zero() {
acc[d] = F::ZERO;
}
}
for (col, filt) in cols_filts {
let mut filter_col = Vec::with_capacity(degree);
let mut combined = (0..degree)
.map(|d| {
let f = if let Some(filter) = filt {
let f = filter.eval_table(trace, d);
filter_col.push(f);
f
} else {
filter_col.push(F::ONE);
F::ONE
};
if f.is_one() {
let evals = col
.iter()
.map(|c| c.eval_table(trace, d))
.collect::<Vec<F>>();
challenge.combine(evals.iter())
} else {
assert_eq!(f, F::ZERO, "Non-binary filter?");
// Dummy value. Cannot be zero since it will be batch-inverted.
F::ONE
}
})
.collect::<Vec<F>>();
combined = F::batch_multiplicative_inverse(&combined);
for d in 0..degree {
if filter_col[d].is_zero() {
combined[d] = F::ZERO;
}
}
batch_add_inplace(&mut acc, &combined);
}
helper_columns.push(acc.into());
}
assert_eq!(helper_columns.len(), num_helper_columns);
helper_columns
}
/// Computes helper columns and Z polynomials for all looking tables
/// of one cross-table lookup (i.e. for one looked table).
fn ctl_helper_zs_cols<F: Field, const N: usize>(
all_stark_traces: &[Vec<PolynomialValues<F>>; N],
looking_tables: Vec<TableWithColumns<F>>,
challenge: GrandProductChallenge<F>,
constraint_degree: usize,
) -> Vec<(usize, Vec<PolynomialValues<F>>)> {
let grouped_lookups = looking_tables.iter().group_by(|a| a.table);
grouped_lookups
.into_iter()
.map(|(table, group)| {
let degree = all_stark_traces[table][0].len();
let columns_filters = group
.map(|table| (&table.columns[..], &table.filter))
.collect::<Vec<(&[Column<F>], &Option<Filter<F>>)>>();
(
table,
partial_sums(
&all_stark_traces[table],
&columns_filters,
challenge,
constraint_degree,
),
)
})
.collect::<Vec<(usize, Vec<PolynomialValues<F>>)>>()
}
/// Computes the cross-table lookup partial sums for one table and given column linear combinations.
/// `trace` represents the trace values for the given table.
/// `columns` is a vector of column linear combinations to evaluate. Each element in the vector represents columns that need to be combined.
/// `filter_cols` are column linear combinations used to determine whether a row should be selected.
/// `challenge` is a cross-table lookup challenge.
/// The initial sum `s` is 0.
/// For each row, if the `filter_column` evaluates to 1, then the row is selected. All the column linear combinations are evaluated at said row.
/// The evaluations of each elements of `columns` are then combined together to form a value `v`.
/// The values `v`` are grouped together, in groups of size `constraint_degree - 1` (2 in our case). For each group, we construct a helper
/// column: h = \sum_i 1/(v_i).
///
/// The sum is updated: `s += \sum h_i`, and is pushed to the vector of partial sums `z``.
/// Returns the helper columns and `z`.
fn partial_sums<F: Field>(
trace: &[PolynomialValues<F>],
columns_filters: &[ColumnFilter<F>],
challenge: GrandProductChallenge<F>,
constraint_degree: usize,
) -> Vec<PolynomialValues<F>> {
let degree = trace[0].len();
let mut z = Vec::with_capacity(degree);
let mut helper_columns =
get_helper_cols(trace, degree, columns_filters, challenge, constraint_degree);
let x = helper_columns
.iter()
.map(|col| col.values[degree - 1])
.sum::<F>();
z.push(x);
for i in (0..degree - 1).rev() {
let x = helper_columns.iter().map(|col| col.values[i]).sum::<F>();
z.push(z[z.len() - 1] + x);
}
z.reverse();
if columns_filters.len() > 2 {
helper_columns.push(z.into());
} else {
helper_columns = vec![z.into()];
}
helper_columns
}
/// Data necessary to check the cross-table lookups of a given table.
#[derive(Clone)]
pub(crate) struct CtlCheckVars<'a, F, FE, P, const D2: usize>
where
F: Field,
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>,
{
/// Helper columns to check that the Z polyomial
/// was constructed correctly.
pub(crate) helper_columns: Vec<P>,
/// Evaluation of the trace polynomials at point `zeta`.
pub(crate) local_z: P,
/// Evaluation of the trace polynomials at point `g * zeta`
pub(crate) next_z: P,
/// Cross-table lookup challenges.
pub(crate) challenges: GrandProductChallenge<F>,
/// Column linear combinations of the `CrossTableLookup`s.
pub(crate) columns: Vec<&'a [Column<F>]>,
/// Filter that evaluates to either 1 or 0.
pub(crate) filter: Vec<Option<Filter<F>>>,
}
impl<'a, F: RichField + Extendable<D>, const D: usize>
CtlCheckVars<'a, F, F::Extension, F::Extension, D>
{
/// Extracts the `CtlCheckVars` for each STARK.
pub(crate) fn from_proofs<C: GenericConfig<D, F = F>, const N: usize>(
proofs: &[StarkProofWithMetadata<F, C, D>; N],
cross_table_lookups: &'a [CrossTableLookup<F>],
ctl_challenges: &'a GrandProductChallengeSet<F>,
num_lookup_columns: &[usize; N],
num_helper_ctl_columns: &Vec<[usize; N]>,
) -> [Vec<Self>; N] {
let mut total_num_helper_cols_by_table = [0; N];
for p_ctls in num_helper_ctl_columns {
for j in 0..N {
total_num_helper_cols_by_table[j] += p_ctls[j] * ctl_challenges.challenges.len();
}
}
// Get all cross-table lookup polynomial openings for each STARK proof.
let mut ctl_zs = proofs
.iter()
.zip(num_lookup_columns)
.map(|(p, &num_lookup)| {
let openings = &p.proof.openings;
let ctl_zs = &openings.auxiliary_polys[num_lookup..];
let ctl_zs_next = &openings.auxiliary_polys_next[num_lookup..];
ctl_zs.iter().zip(ctl_zs_next).collect::<Vec<_>>()
})
.collect::<Vec<_>>();
// Put each cross-table lookup polynomial into the correct table data: if a CTL polynomial is extracted from looking/looked table t, then we add it to the `CtlCheckVars` of table t.
let mut start_indices = [0; N];
let mut z_indices = [0; N];
let mut ctl_vars_per_table = [0; N].map(|_| vec![]);
for (
CrossTableLookup {
looking_tables,
looked_table,
},
num_ctls,
) in cross_table_lookups.iter().zip(num_helper_ctl_columns)
{
for &challenges in &ctl_challenges.challenges {
// Group looking tables by `Table`, since we bundle the looking tables taken from the same `Table` together thanks to helper columns.
// We want to only iterate on each `Table` once.
let mut filtered_looking_tables = Vec::with_capacity(min(looking_tables.len(), N));
for table in looking_tables {
if !filtered_looking_tables.contains(&(table.table)) {
filtered_looking_tables.push(table.table);
}
}
for (i, &table) in filtered_looking_tables.iter().enumerate() {
// We have first all the helper polynomials, then all the z polynomials.
let (looking_z, looking_z_next) =
ctl_zs[table][total_num_helper_cols_by_table[table] + z_indices[table]];
let count = looking_tables
.iter()
.filter(|looking_table| looking_table.table == table)
.count();
let cols_filts = looking_tables.iter().filter_map(|looking_table| {
if looking_table.table == table {
Some((&looking_table.columns, &looking_table.filter))
} else {
None
}
});
let mut columns = Vec::with_capacity(count);
let mut filter = Vec::with_capacity(count);
for (col, filt) in cols_filts {
columns.push(&col[..]);
filter.push(filt.clone());
}
let helper_columns = ctl_zs[table]
[start_indices[table]..start_indices[table] + num_ctls[table]]
.iter()
.map(|&(h, _)| *h)
.collect::<Vec<_>>();
start_indices[table] += num_ctls[table];
z_indices[table] += 1;
ctl_vars_per_table[table].push(Self {
helper_columns,
local_z: *looking_z,
next_z: *looking_z_next,
challenges,
columns,
filter,
});
}
let (looked_z, looked_z_next) = ctl_zs[looked_table.table]
[total_num_helper_cols_by_table[looked_table.table]
+ z_indices[looked_table.table]];
z_indices[looked_table.table] += 1;
let columns = vec![&looked_table.columns[..]];
let filter = vec![looked_table.filter.clone()];
ctl_vars_per_table[looked_table.table].push(Self {
helper_columns: vec![],
local_z: *looked_z,
next_z: *looked_z_next,
challenges,
columns,
filter,
});
}
}
ctl_vars_per_table
}
}
/// Given data associated to a lookup (either a CTL or a range-check), check the associated helper polynomials.
pub(crate) fn eval_helper_columns<F, FE, P, const D: usize, const D2: usize>(
filter: &[Option<Filter<F>>],
columns: &[Vec<P>],
local_values: &[P],
next_values: &[P],
helper_columns: &[P],
constraint_degree: usize,
challenges: &GrandProductChallenge<F>,
consumer: &mut ConstraintConsumer<P>,
) where
F: RichField + Extendable<D>,
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>,
{
if !helper_columns.is_empty() {
for (j, chunk) in columns.chunks(constraint_degree - 1).enumerate() {
let fs =
&filter[(constraint_degree - 1) * j..(constraint_degree - 1) * j + chunk.len()];
let h = helper_columns[j];
match chunk.len() {
2 => {
let combin0 = challenges.combine(&chunk[0]);
let combin1 = challenges.combine(chunk[1].iter());
let f0 = if let Some(filter0) = &fs[0] {
filter0.eval_filter(local_values, next_values)
} else {
P::ONES
};
let f1 = if let Some(filter1) = &fs[1] {
filter1.eval_filter(local_values, next_values)
} else {
P::ONES
};
consumer.constraint(combin1 * combin0 * h - f0 * combin1 - f1 * combin0);
}
1 => {
let combin = challenges.combine(&chunk[0]);
let f0 = if let Some(filter1) = &fs[0] {
filter1.eval_filter(local_values, next_values)
} else {
P::ONES
};
consumer.constraint(combin * h - f0);
}
_ => todo!("Allow other constraint degrees"),
}
}
}
}
/// Checks the cross-table lookup Z polynomials for each table:
/// - Checks that the CTL `Z` partial sums are correctly updated.
/// - Checks that the final value of the CTL sum is the combination of all STARKs' CTL polynomials.
/// CTL `Z` partial sums are upside down: the complete sum is on the first row, and
/// the first term is on the last row. This allows the transition constraint to be:
/// `combine(w) * (Z(w) - Z(gw)) = filter` where combine is called on the local row
/// and not the next. This enables CTLs across two rows.
pub(crate) fn eval_cross_table_lookup_checks<F, FE, P, S, const D: usize, const D2: usize>(
vars: &S::EvaluationFrame<FE, P, D2>,
ctl_vars: &[CtlCheckVars<F, FE, P, D2>],
consumer: &mut ConstraintConsumer<P>,
constraint_degree: usize,
) where
F: RichField + Extendable<D>,
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>,
S: Stark<F, D>,
{
let local_values = vars.get_local_values();
let next_values = vars.get_next_values();
for lookup_vars in ctl_vars {
let CtlCheckVars {
helper_columns,
local_z,
next_z,
challenges,
columns,
filter,
} = lookup_vars;
// Compute all linear combinations on the current table, and combine them using the challenge.
let evals = columns
.iter()
.map(|col| {
col.iter()
.map(|c| c.eval_with_next(local_values, next_values))
.collect::<Vec<_>>()
})
.collect::<Vec<_>>();
// Check helper columns.
eval_helper_columns(
filter,
&evals,
local_values,
next_values,
helper_columns,
constraint_degree,
challenges,
consumer,
);
if !helper_columns.is_empty() {
let h_sum = helper_columns.iter().fold(P::ZEROS, |acc, x| acc + *x);
// Check value of `Z(g^(n-1))`
consumer.constraint_last_row(*local_z - h_sum);
// Check `Z(w) = Z(gw) + \sum h_i`
consumer.constraint_transition(*local_z - *next_z - h_sum);
} else if columns.len() > 1 {
let combin0 = challenges.combine(&evals[0]);
let combin1 = challenges.combine(&evals[1]);
let f0 = if let Some(filter0) = &filter[0] {
filter0.eval_filter(local_values, next_values)
} else {
P::ONES
};
let f1 = if let Some(filter1) = &filter[1] {
filter1.eval_filter(local_values, next_values)
} else {
P::ONES
};
consumer
.constraint_last_row(combin0 * combin1 * *local_z - f0 * combin1 - f1 * combin0);
consumer.constraint_transition(
combin0 * combin1 * (*local_z - *next_z) - f0 * combin1 - f1 * combin0,
);
} else {
let combin0 = challenges.combine(&evals[0]);
let f0 = if let Some(filter0) = &filter[0] {
filter0.eval_filter(local_values, next_values)
} else {
P::ONES
};
consumer.constraint_last_row(combin0 * *local_z - f0);
consumer.constraint_transition(combin0 * (*local_z - *next_z) - f0);
}
}
}
/// Circuit version of `CtlCheckVars`. Data necessary to check the cross-table lookups of a given table.
#[derive(Clone)]
pub(crate) struct CtlCheckVarsTarget<F: Field, const D: usize> {
///Evaluation of the helper columns to check that the Z polyomial
/// was constructed correctly.
pub(crate) helper_columns: Vec<ExtensionTarget<D>>,
/// Evaluation of the trace polynomials at point `zeta`.
pub(crate) local_z: ExtensionTarget<D>,
/// Evaluation of the trace polynomials at point `g * zeta`.
pub(crate) next_z: ExtensionTarget<D>,
/// Cross-table lookup challenges.
pub(crate) challenges: GrandProductChallenge<Target>,
/// Column linear combinations of the `CrossTableLookup`s.
pub(crate) columns: Vec<Vec<Column<F>>>,
/// Filter that evaluates to either 1 or 0.
pub(crate) filter: Vec<Option<Filter<F>>>,
}
impl<'a, F: Field, const D: usize> CtlCheckVarsTarget<F, D> {
/// Circuit version of `from_proofs`. Extracts the `CtlCheckVarsTarget` for each STARK.
pub(crate) fn from_proof(
table: TableIdx,
proof: &StarkProofTarget<D>,
cross_table_lookups: &'a [CrossTableLookup<F>],
ctl_challenges: &'a GrandProductChallengeSet<Target>,
num_lookup_columns: usize,
total_num_helper_columns: usize,
num_helper_ctl_columns: &[usize],
) -> Vec<Self> {
// Get all cross-table lookup polynomial openings for each STARK proof.
let mut ctl_zs = {
let openings = &proof.openings;
let ctl_zs = openings.auxiliary_polys.iter().skip(num_lookup_columns);
let ctl_zs_next = openings
.auxiliary_polys_next
.iter()
.skip(num_lookup_columns);
ctl_zs.zip(ctl_zs_next).collect::<Vec<_>>()
};
// Put each cross-table lookup polynomial into the correct table data: if a CTL polynomial is extracted from looking/looked table t, then we add it to the `CtlCheckVars` of table t.
let mut z_index = 0;
let mut start_index = 0;
let mut ctl_vars = vec![];
for (
i,
CrossTableLookup {
looking_tables,
looked_table,
},
) in cross_table_lookups.iter().enumerate()
{
for &challenges in &ctl_challenges.challenges {
// Group looking tables by `Table`, since we bundle the looking tables taken from the same `Table` together thanks to helper columns.
let count = looking_tables
.iter()
.filter(|looking_table| looking_table.table == table)
.count();
let cols_filts = looking_tables.iter().filter_map(|looking_table| {
if looking_table.table == table {
Some((&looking_table.columns, &looking_table.filter))
} else {
None
}
});
if count > 0 {
let mut columns = Vec::with_capacity(count);
let mut filter = Vec::with_capacity(count);
for (col, filt) in cols_filts {
columns.push(col.clone());
filter.push(filt.clone());
}
let (looking_z, looking_z_next) = ctl_zs[total_num_helper_columns + z_index];
let helper_columns = ctl_zs
[start_index..start_index + num_helper_ctl_columns[i]]
.iter()
.map(|(&h, _)| h)
.collect::<Vec<_>>();
start_index += num_helper_ctl_columns[i];
z_index += 1;
// let columns = group.0.clone();
// let filter = group.1.clone();
ctl_vars.push(Self {
helper_columns,
local_z: *looking_z,
next_z: *looking_z_next,
challenges,
columns,
filter,
});
}
if looked_table.table == table {
let (looked_z, looked_z_next) = ctl_zs[total_num_helper_columns + z_index];
z_index += 1;
let columns = vec![looked_table.columns.clone()];
let filter = vec![looked_table.filter.clone()];
ctl_vars.push(Self {
helper_columns: vec![],
local_z: *looked_z,
next_z: *looked_z_next,
challenges,
columns,
filter,
});
}
}
}
ctl_vars
}
}
/// Circuit version of `eval_helper_columns`.
/// Given data associated to a lookup (either a CTL or a range-check), check the associated helper polynomials.
pub(crate) fn eval_helper_columns_circuit<F: RichField + Extendable<D>, const D: usize>(
builder: &mut CircuitBuilder<F, D>,
filter: &[Option<Filter<F>>],
columns: &[Vec<ExtensionTarget<D>>],
local_values: &[ExtensionTarget<D>],
next_values: &[ExtensionTarget<D>],
helper_columns: &[ExtensionTarget<D>],
constraint_degree: usize,
challenges: &GrandProductChallenge<Target>,
consumer: &mut RecursiveConstraintConsumer<F, D>,
) {
if !helper_columns.is_empty() {
for (j, chunk) in columns.chunks(constraint_degree - 1).enumerate() {
let fs =
&filter[(constraint_degree - 1) * j..(constraint_degree - 1) * j + chunk.len()];
let h = helper_columns[j];
let one = builder.one_extension();
match chunk.len() {
2 => {
let combin0 = challenges.combine_circuit(builder, &chunk[0]);
let combin1 = challenges.combine_circuit(builder, &chunk[1]);
let f0 = if let Some(filter0) = &fs[0] {
filter0.eval_filter_circuit(builder, local_values, next_values)
} else {
one
};
let f1 = if let Some(filter1) = &fs[1] {
filter1.eval_filter_circuit(builder, local_values, next_values)
} else {
one
};
let constr = builder.mul_sub_extension(combin0, h, f0);
let constr = builder.mul_extension(constr, combin1);
let f1_constr = builder.mul_extension(f1, combin0);
let constr = builder.sub_extension(constr, f1_constr);
consumer.constraint(builder, constr);
}
1 => {
let combin = challenges.combine_circuit(builder, &chunk[0]);
let f0 = if let Some(filter1) = &fs[0] {
filter1.eval_filter_circuit(builder, local_values, next_values)
} else {
one
};
let constr = builder.mul_sub_extension(combin, h, f0);
consumer.constraint(builder, constr);
}
_ => todo!("Allow other constraint degrees"),
}
}
}
}
/// Circuit version of `eval_cross_table_lookup_checks`. Checks the cross-table lookup Z polynomials for each table:
/// - Checks that the CTL `Z` partial sums are correctly updated.
/// - Checks that the final value of the CTL sum is the combination of all STARKs' CTL polynomials.
/// CTL `Z` partial sums are upside down: the complete sum is on the first row, and
/// the first term is on the last row. This allows the transition constraint to be:
/// `combine(w) * (Z(w) - Z(gw)) = filter` where combine is called on the local row
/// and not the next. This enables CTLs across two rows.
pub(crate) fn eval_cross_table_lookup_checks_circuit<
S: Stark<F, D>,
F: RichField + Extendable<D>,
const D: usize,
>(
builder: &mut CircuitBuilder<F, D>,
vars: &S::EvaluationFrameTarget,
ctl_vars: &[CtlCheckVarsTarget<F, D>],
consumer: &mut RecursiveConstraintConsumer<F, D>,
constraint_degree: usize,
) {
let local_values = vars.get_local_values();
let next_values = vars.get_next_values();
let one = builder.one_extension();
for lookup_vars in ctl_vars {
let CtlCheckVarsTarget {
helper_columns,
local_z,
next_z,
challenges,
columns,
filter,
} = lookup_vars;
// Compute all linear combinations on the current table, and combine them using the challenge.
let evals = columns
.iter()
.map(|col| {
col.iter()
.map(|c| c.eval_with_next_circuit(builder, local_values, next_values))
.collect::<Vec<_>>()
})
.collect::<Vec<_>>();
// Check helper columns.
eval_helper_columns_circuit(
builder,
filter,
&evals,
local_values,
next_values,
helper_columns,
constraint_degree,
challenges,
consumer,
);
let z_diff = builder.sub_extension(*local_z, *next_z);
if !helper_columns.is_empty() {
// Check value of `Z(g^(n-1))`
let h_sum = builder.add_many_extension(helper_columns);
let last_row = builder.sub_extension(*local_z, h_sum);
consumer.constraint_last_row(builder, last_row);
// Check `Z(w) = Z(gw) * (filter / combination)`
let transition = builder.sub_extension(z_diff, h_sum);
consumer.constraint_transition(builder, transition);
} else if columns.len() > 1 {
let combin0 = challenges.combine_circuit(builder, &evals[0]);
let combin1 = challenges.combine_circuit(builder, &evals[1]);
let f0 = if let Some(filter0) = &filter[0] {
filter0.eval_filter_circuit(builder, local_values, next_values)
} else {
one
};
let f1 = if let Some(filter1) = &filter[1] {
filter1.eval_filter_circuit(builder, local_values, next_values)
} else {
one
};
let combined = builder.mul_sub_extension(combin1, *local_z, f1);
let combined = builder.mul_extension(combined, combin0);
let constr = builder.arithmetic_extension(F::NEG_ONE, F::ONE, f0, combin1, combined);
consumer.constraint_last_row(builder, constr);
let combined = builder.mul_sub_extension(combin1, z_diff, f1);
let combined = builder.mul_extension(combined, combin0);
let constr = builder.arithmetic_extension(F::NEG_ONE, F::ONE, f0, combin1, combined);
consumer.constraint_last_row(builder, constr);
} else {
let combin0 = challenges.combine_circuit(builder, &evals[0]);
let f0 = if let Some(filter0) = &filter[0] {
filter0.eval_filter_circuit(builder, local_values, next_values)
} else {
one
};
let constr = builder.mul_sub_extension(combin0, *local_z, f0);
consumer.constraint_last_row(builder, constr);
let constr = builder.mul_sub_extension(combin0, z_diff, f0);
consumer.constraint_transition(builder, constr);
}
}
}
/// Verifies all cross-table lookups.
pub(crate) fn verify_cross_table_lookups<
F: RichField + Extendable<D>,
const D: usize,
const N: usize,
>(
cross_table_lookups: &[CrossTableLookup<F>],
ctl_zs_first: [Vec<F>; N],
ctl_extra_looking_sums: Vec<Vec<F>>,
config: &StarkConfig,
) -> Result<()> {
let mut ctl_zs_openings = ctl_zs_first.iter().map(|v| v.iter()).collect::<Vec<_>>();
for (
index,
CrossTableLookup {
looking_tables,
looked_table,
},
) in cross_table_lookups.iter().enumerate()
{
// Get elements looking into `looked_table` that are not associated to any STARK.
let extra_sum_vec = &ctl_extra_looking_sums[looked_table.table];
// We want to iterate on each looking table only once.
let mut filtered_looking_tables = vec![];
for table in looking_tables {
if !filtered_looking_tables.contains(&(table.table)) {
filtered_looking_tables.push(table.table);
}
}
for c in 0..config.num_challenges {
// Compute the combination of all looking table CTL polynomial openings.
let looking_zs_sum = filtered_looking_tables
.iter()
.map(|&table| *ctl_zs_openings[table].next().unwrap())
.sum::<F>()
+ extra_sum_vec[c];
// Get the looked table CTL polynomial opening.
let looked_z = *ctl_zs_openings[looked_table.table].next().unwrap();
// Ensure that the combination of looking table openings is equal to the looked table opening.
ensure!(
looking_zs_sum == looked_z,
"Cross-table lookup {:?} verification failed.",
index
);
}
}
debug_assert!(ctl_zs_openings.iter_mut().all(|iter| iter.next().is_none()));
Ok(())
}
/// Circuit version of `verify_cross_table_lookups`. Verifies all cross-table lookups.
pub(crate) fn verify_cross_table_lookups_circuit<
F: RichField + Extendable<D>,
const D: usize,
const N: usize,
>(
builder: &mut CircuitBuilder<F, D>,
cross_table_lookups: Vec<CrossTableLookup<F>>,
ctl_zs_first: [Vec<Target>; N],
ctl_extra_looking_sums: Vec<Vec<Target>>,
inner_config: &StarkConfig,
) {
let mut ctl_zs_openings = ctl_zs_first.iter().map(|v| v.iter()).collect::<Vec<_>>();
for CrossTableLookup {
looking_tables,
looked_table,
} in cross_table_lookups.into_iter()
{
// Get elements looking into `looked_table` that are not associated to any STARK.
let extra_sum_vec = &ctl_extra_looking_sums[looked_table.table];
// We want to iterate on each looking table only once.
let mut filtered_looking_tables = vec![];
for table in looking_tables {
if !filtered_looking_tables.contains(&(table.table)) {
filtered_looking_tables.push(table.table);
}
}
for c in 0..inner_config.num_challenges {
// Compute the combination of all looking table CTL polynomial openings.
let mut looking_zs_sum = builder.add_many(
filtered_looking_tables
.iter()
.map(|&table| *ctl_zs_openings[table].next().unwrap()),
);
looking_zs_sum = builder.add(looking_zs_sum, extra_sum_vec[c]);
// Get the looked table CTL polynomial opening.
let looked_z = *ctl_zs_openings[looked_table.table].next().unwrap();
// Verify that the combination of looking table openings is equal to the looked table opening.
builder.connect(looked_z, looking_zs_sum);
}
}
debug_assert!(ctl_zs_openings.iter_mut().all(|iter| iter.next().is_none()));
}
#[cfg(test)]
pub(crate) mod testutils {
use std::collections::HashMap;
use plonky2::field::polynomial::PolynomialValues;
use plonky2::field::types::Field;
use crate::all_stark::Table;
use crate::cross_table_lookup::{CrossTableLookup, TableWithColumns};
type MultiSet<F> = HashMap<Vec<F>, Vec<(Table, usize)>>;
/// Check that the provided traces and cross-table lookups are consistent.
pub(crate) fn check_ctls<F: Field>(
trace_poly_values: &[Vec<PolynomialValues<F>>],
cross_table_lookups: &[CrossTableLookup<F>],
extra_memory_looking_values: &[Vec<F>],
) {
for (i, ctl) in cross_table_lookups.iter().enumerate() {
check_ctl(trace_poly_values, ctl, i, extra_memory_looking_values);
}
}
fn check_ctl<F: Field>(
trace_poly_values: &[Vec<PolynomialValues<F>>],
ctl: &CrossTableLookup<F>,
ctl_index: usize,
extra_memory_looking_values: &[Vec<F>],
) {
let CrossTableLookup {
looking_tables,
looked_table,
} = ctl;
// Maps `m` with `(table, i) in m[row]` iff the `i`-th row of `table` is equal to `row` and
// the filter is 1. Without default values, the CTL check holds iff `looking_multiset == looked_multiset`.
let mut looking_multiset = MultiSet::<F>::new();
let mut looked_multiset = MultiSet::<F>::new();
for table in looking_tables {
process_table(trace_poly_values, table, &mut looking_multiset);
}
process_table(trace_poly_values, looked_table, &mut looked_multiset);
// Extra looking values for memory
if ctl_index == Table::Memory as usize {
for row in extra_memory_looking_values.iter() {
// The table and the row index don't matter here, as we just want to enforce
// that the special extra values do appear when looking against the Memory table.
looking_multiset
.entry(row.to_vec())
.or_default()
.push((Table::Cpu, 0));
}
}
let empty = &vec![];
// Check that every row in the looking tables appears in the looked table the same number of times.
for (row, looking_locations) in &looking_multiset {
let looked_locations = looked_multiset.get(row).unwrap_or(empty);
check_locations(looking_locations, looked_locations, ctl_index, row);
}
// Check that every row in the looked tables appears in the looked table the same number of times.
for (row, looked_locations) in &looked_multiset {
let looking_locations = looking_multiset.get(row).unwrap_or(empty);
check_locations(looking_locations, looked_locations, ctl_index, row);
}
}
fn process_table<F: Field>(
trace_poly_values: &[Vec<PolynomialValues<F>>],
table: &TableWithColumns<F>,
multiset: &mut MultiSet<F>,
) {
let trace = &trace_poly_values[table.table];
for i in 0..trace[0].len() {
let filter = if let Some(combin) = &table.filter {
combin.eval_table(trace, i)
} else {
F::ONE
};
if filter.is_one() {
let row = table
.columns
.iter()
.map(|c| c.eval_table(trace, i))
.collect::<Vec<_>>();
multiset
.entry(row)
.or_default()
.push((Table::all()[table.table], i));
} else {
assert_eq!(filter, F::ZERO, "Non-binary filter?")
}
}
}
fn check_locations<F: Field>(
looking_locations: &[(Table, usize)],
looked_locations: &[(Table, usize)],
ctl_index: usize,
row: &[F],
) {
if looking_locations.len() != looked_locations.len() {
panic!(
"CTL #{ctl_index}:\n\
Row {row:?} is present {l0} times in the looking tables, but {l1} times in the looked table.\n\
Looking locations (Table, Row index): {looking_locations:?}.\n\
Looked locations (Table, Row index): {looked_locations:?}.",
l0 = looking_locations.len(),
l1 = looked_locations.len(),
);
}
}
}