Daniel Lubarov e382decc9f Import fixes
2021-07-29 11:45:58 -07:00

298 lines
8.5 KiB
Rust

use std::fmt::{Debug, Display, Formatter};
use std::hash::Hash;
use std::iter::{Product, Sum};
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use num::bigint::BigUint;
use rand::Rng;
use serde::{Deserialize, Serialize};
use crate::field::crandall_field::CrandallField;
use crate::field::extension_field::{FieldExtension, Frobenius, OEF};
use crate::field::field::Field;
#[derive(Copy, Clone, Eq, PartialEq, Hash, Serialize, Deserialize)]
pub struct QuadraticCrandallField([CrandallField; 2]);
impl OEF<2> for QuadraticCrandallField {
// Verifiable in Sage with
// ``R.<x> = GF(p)[]; assert (x^2 -3).is_irreducible()`.
const W: CrandallField = CrandallField(3);
}
impl Frobenius<2> for QuadraticCrandallField {}
impl FieldExtension<2> for QuadraticCrandallField {
type BaseField = CrandallField;
fn to_basefield_array(&self) -> [Self::BaseField; 2] {
self.0
}
fn from_basefield_array(arr: [Self::BaseField; 2]) -> Self {
Self(arr)
}
fn from_basefield(x: Self::BaseField) -> Self {
x.into()
}
}
impl From<<Self as FieldExtension<2>>::BaseField> for QuadraticCrandallField {
fn from(x: <Self as FieldExtension<2>>::BaseField) -> Self {
Self([x, <Self as FieldExtension<2>>::BaseField::ZERO])
}
}
impl Field for QuadraticCrandallField {
type PrimeField = CrandallField;
const ZERO: Self = Self([CrandallField::ZERO; 2]);
const ONE: Self = Self([CrandallField::ONE, CrandallField::ZERO]);
const TWO: Self = Self([CrandallField::TWO, CrandallField::ZERO]);
const NEG_ONE: Self = Self([CrandallField::NEG_ONE, CrandallField::ZERO]);
const CHARACTERISTIC: u64 = CrandallField::CHARACTERISTIC;
const TWO_ADICITY: usize = 29;
const MULTIPLICATIVE_GROUP_GENERATOR: Self = Self([
CrandallField(6483724566312148654),
CrandallField(12194665049945415126),
]);
// Chosen so that when raised to the power `1<<(Self::TWO_ADICITY-Self::BaseField::TWO_ADICITY)`,
// we get `Self::BaseField::POWER_OF_TWO_GENERATOR`. This makes `primitive_root_of_unity` coherent
// with the base field which implies that the FFT commutes with field inclusion.
const POWER_OF_TWO_GENERATOR: Self =
Self([CrandallField::ZERO, CrandallField(14420468973723774561)]);
fn order() -> BigUint {
CrandallField::order() * CrandallField::order()
}
// Algorithm 11.3.4 in Handbook of Elliptic and Hyperelliptic Curve Cryptography.
fn try_inverse(&self) -> Option<Self> {
if self.is_zero() {
return None;
}
let a_pow_r_minus_1 = self.frobenius();
let a_pow_r = a_pow_r_minus_1 * *self;
debug_assert!(FieldExtension::<2>::is_in_basefield(&a_pow_r));
Some(a_pow_r_minus_1 * a_pow_r.0[0].inverse().into())
}
fn to_canonical_u64(&self) -> u64 {
self.0[0].to_canonical_u64()
}
fn from_canonical_u64(n: u64) -> Self {
<Self as FieldExtension<2>>::BaseField::from_canonical_u64(n).into()
}
fn to_canonical_biguint(&self) -> BigUint {
let first = self.0[0].to_canonical_biguint();
let second = self.0[1].to_canonical_biguint();
let combined = second * Self::CHARACTERISTIC + first;
combined
}
fn from_canonical_biguint(n: BigUint) -> Self {
let smaller = n.clone() % Self::CHARACTERISTIC;
let larger = n.clone() / Self::CHARACTERISTIC;
Self([
<Self as FieldExtension<2>>::BaseField::from_canonical_biguint(smaller),
<Self as FieldExtension<2>>::BaseField::from_canonical_biguint(larger),
])
}
fn rand_from_rng<R: Rng>(rng: &mut R) -> Self {
Self([
<Self as FieldExtension<2>>::BaseField::rand_from_rng(rng),
<Self as FieldExtension<2>>::BaseField::rand_from_rng(rng),
])
}
}
impl Display for QuadraticCrandallField {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "{} + {}*a", self.0[0], self.0[1])
}
}
impl Debug for QuadraticCrandallField {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
Display::fmt(self, f)
}
}
impl Neg for QuadraticCrandallField {
type Output = Self;
#[inline]
fn neg(self) -> Self {
Self([-self.0[0], -self.0[1]])
}
}
impl Add for QuadraticCrandallField {
type Output = Self;
#[inline]
fn add(self, rhs: Self) -> Self {
Self([self.0[0] + rhs.0[0], self.0[1] + rhs.0[1]])
}
}
impl AddAssign for QuadraticCrandallField {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl Sum for QuadraticCrandallField {
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::ZERO, |acc, x| acc + x)
}
}
impl Sub for QuadraticCrandallField {
type Output = Self;
#[inline]
fn sub(self, rhs: Self) -> Self {
Self([self.0[0] - rhs.0[0], self.0[1] - rhs.0[1]])
}
}
impl SubAssign for QuadraticCrandallField {
#[inline]
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl Mul for QuadraticCrandallField {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self {
let Self([a0, a1]) = self;
let Self([b0, b1]) = rhs;
let c0 = a0 * b0 + <Self as OEF<2>>::W * a1 * b1;
let c1 = a0 * b1 + a1 * b0;
Self([c0, c1])
}
}
impl MulAssign for QuadraticCrandallField {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl Product for QuadraticCrandallField {
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::ONE, |acc, x| acc * x)
}
}
impl Div for QuadraticCrandallField {
type Output = Self;
#[allow(clippy::suspicious_arithmetic_impl)]
fn div(self, rhs: Self) -> Self::Output {
self * rhs.inverse()
}
}
impl DivAssign for QuadraticCrandallField {
fn div_assign(&mut self, rhs: Self) {
*self = *self / rhs;
}
}
#[cfg(test)]
mod tests {
use crate::field::extension_field::quadratic::QuadraticCrandallField;
use crate::field::extension_field::{FieldExtension, Frobenius};
use crate::field::field::Field;
use crate::test_field_arithmetic;
#[test]
fn test_add_neg_sub_mul() {
type F = QuadraticCrandallField;
let x = F::rand();
let y = F::rand();
let z = F::rand();
assert_eq!(x + (-x), F::ZERO);
assert_eq!(-x, F::ZERO - x);
assert_eq!(x + x, x * <F as FieldExtension<2>>::BaseField::TWO.into());
assert_eq!(x * (-x), -x.square());
assert_eq!(x + y, y + x);
assert_eq!(x * y, y * x);
assert_eq!(x * (y * z), (x * y) * z);
assert_eq!(x - (y + z), (x - y) - z);
assert_eq!((x + y) - z, x + (y - z));
assert_eq!(x * (y + z), x * y + x * z);
}
#[test]
fn test_inv_div() {
type F = QuadraticCrandallField;
let x = F::rand();
let y = F::rand();
let z = F::rand();
assert_eq!(x * x.inverse(), F::ONE);
assert_eq!(x.inverse() * x, F::ONE);
assert_eq!(x.square().inverse(), x.inverse().square());
assert_eq!((x / y) * y, x);
assert_eq!(x / (y * z), (x / y) / z);
assert_eq!((x * y) / z, x * (y / z));
}
#[test]
fn test_frobenius() {
type F = QuadraticCrandallField;
let x = F::rand();
assert_eq!(
x.exp_biguint(&<F as FieldExtension<2>>::BaseField::order()),
x.frobenius()
);
}
#[test]
fn test_field_order() {
// F::order() = 340282366831806780677557380898690695169 = 18446744071293632512 *18446744071293632514 + 1
type F = QuadraticCrandallField;
let x = F::rand();
assert_eq!(
x.exp(18446744071293632512).exp(18446744071293632514),
F::ONE
);
}
#[test]
fn test_power_of_two_gen() {
type F = QuadraticCrandallField;
// F::order() = 2^29 * 2762315674048163 * 229454332791453 + 1
assert_eq!(
F::MULTIPLICATIVE_GROUP_GENERATOR
.exp(2762315674048163)
.exp(229454332791453),
F::POWER_OF_TWO_GENERATOR
);
assert_eq!(
F::POWER_OF_TWO_GENERATOR
.exp(1 << (F::TWO_ADICITY - <F as FieldExtension<2>>::BaseField::TWO_ADICITY)),
<F as FieldExtension<2>>::BaseField::POWER_OF_TWO_GENERATOR.into()
);
}
test_field_arithmetic!(crate::field::extension_field::quadratic::QuadraticCrandallField);
}