plonky2/starky/src/verifier.rs
2022-02-23 09:36:28 +01:00

207 lines
7.1 KiB
Rust

use std::iter::once;
use anyhow::{ensure, Result};
use itertools::Itertools;
use plonky2::field::extension_field::{Extendable, FieldExtension};
use plonky2::field::field_types::Field;
use plonky2::fri::verifier::verify_fri_proof;
use plonky2::hash::hash_types::RichField;
use plonky2::plonk::config::{GenericConfig, Hasher};
use plonky2::plonk::plonk_common::reduce_with_powers;
use crate::config::StarkConfig;
use crate::constraint_consumer::ConstraintConsumer;
use crate::permutation::PermutationCheckVars;
use crate::proof::{StarkOpeningSet, StarkProofChallenges, StarkProofWithPublicInputs};
use crate::stark::Stark;
use crate::vanishing_poly::eval_vanishing_poly;
use crate::vars::StarkEvaluationVars;
pub fn verify_stark_proof<
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
S: Stark<F, D>,
const D: usize,
>(
stark: S,
proof_with_pis: StarkProofWithPublicInputs<F, C, D>,
config: &StarkConfig,
) -> Result<()>
where
[(); S::COLUMNS]:,
[(); S::PUBLIC_INPUTS]:,
[(); C::Hasher::HASH_SIZE]:,
{
ensure!(proof_with_pis.public_inputs.len() == S::PUBLIC_INPUTS);
let degree_bits = proof_with_pis.proof.recover_degree_bits(config);
let challenges = proof_with_pis.get_challenges(&stark, config, degree_bits);
verify_stark_proof_with_challenges(stark, proof_with_pis, challenges, degree_bits, config)
}
pub(crate) fn verify_stark_proof_with_challenges<
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
S: Stark<F, D>,
const D: usize,
>(
stark: S,
proof_with_pis: StarkProofWithPublicInputs<F, C, D>,
challenges: StarkProofChallenges<F, D>,
degree_bits: usize,
config: &StarkConfig,
) -> Result<()>
where
[(); S::COLUMNS]:,
[(); S::PUBLIC_INPUTS]:,
[(); C::Hasher::HASH_SIZE]:,
{
check_permutation_options(&stark, &proof_with_pis, &challenges)?;
let StarkProofWithPublicInputs {
proof,
public_inputs,
} = proof_with_pis;
let StarkOpeningSet {
local_values,
next_values,
permutation_zs,
permutation_zs_right,
quotient_polys,
} = &proof.openings;
let vars = StarkEvaluationVars {
local_values: &local_values.to_vec().try_into().unwrap(),
next_values: &next_values.to_vec().try_into().unwrap(),
public_inputs: &public_inputs
.into_iter()
.map(F::Extension::from_basefield)
.collect::<Vec<_>>()
.try_into()
.unwrap(),
};
let (l_1, l_last) = eval_l_1_and_l_last(degree_bits, challenges.stark_zeta);
let last = F::primitive_root_of_unity(degree_bits).inverse();
let z_last = challenges.stark_zeta - last.into();
let mut consumer = ConstraintConsumer::<F::Extension>::new(
challenges
.stark_alphas
.iter()
.map(|&alpha| F::Extension::from_basefield(alpha))
.collect::<Vec<_>>(),
z_last,
l_1,
l_last,
);
let permutation_data = stark.uses_permutation_args().then(|| PermutationCheckVars {
local_zs: permutation_zs.as_ref().unwrap().clone(),
next_zs: permutation_zs_right.as_ref().unwrap().clone(),
permutation_challenge_sets: challenges.permutation_challenge_sets.unwrap(),
});
eval_vanishing_poly::<F, F::Extension, F::Extension, C, S, D, D>(
&stark,
config,
vars,
permutation_data,
&mut consumer,
);
let vanishing_polys_zeta = consumer.accumulators();
// Check each polynomial identity, of the form `vanishing(x) = Z_H(x) quotient(x)`, at zeta.
let quotient_polys_zeta = &proof.openings.quotient_polys;
let zeta_pow_deg = challenges.stark_zeta.exp_power_of_2(degree_bits);
let z_h_zeta = zeta_pow_deg - F::Extension::ONE;
// `quotient_polys_zeta` holds `num_challenges * quotient_degree_factor` evaluations.
// Each chunk of `quotient_degree_factor` holds the evaluations of `t_0(zeta),...,t_{quotient_degree_factor-1}(zeta)`
// where the "real" quotient polynomial is `t(X) = t_0(X) + t_1(X)*X^n + t_2(X)*X^{2n} + ...`.
// So to reconstruct `t(zeta)` we can compute `reduce_with_powers(chunk, zeta^n)` for each
// `quotient_degree_factor`-sized chunk of the original evaluations.
for (i, chunk) in quotient_polys_zeta
.chunks(stark.quotient_degree_factor())
.enumerate()
{
ensure!(vanishing_polys_zeta[i] == z_h_zeta * reduce_with_powers(chunk, zeta_pow_deg));
}
let merkle_caps = once(proof.trace_cap)
.chain(proof.permutation_zs_cap)
.chain(once(proof.quotient_polys_cap))
.collect_vec();
verify_fri_proof::<F, C, D>(
&stark.fri_instance(
challenges.stark_zeta,
F::primitive_root_of_unity(degree_bits),
config,
),
&proof.openings.to_fri_openings(),
&challenges.fri_challenges,
&merkle_caps,
&proof.opening_proof,
&config.fri_params(degree_bits),
)?;
Ok(())
}
/// Evaluate the Lagrange polynomials `L_1` and `L_n` at a point `x`.
/// `L_1(x) = (x^n - 1)/(n * (x - 1))`
/// `L_n(x) = (x^n - 1)/(n * (g * x - 1))`, with `g` the first element of the subgroup.
fn eval_l_1_and_l_last<F: Field>(log_n: usize, x: F) -> (F, F) {
let n = F::from_canonical_usize(1 << log_n);
let g = F::primitive_root_of_unity(log_n);
let z_x = x.exp_power_of_2(log_n) - F::ONE;
let invs = F::batch_multiplicative_inverse(&[n * (x - F::ONE), n * (g * x - F::ONE)]);
(z_x * invs[0], z_x * invs[1])
}
/// Utility function to check that all permutation data wrapped in `Option`s are `Some` iff
/// the Stark uses a permutation argument.
fn check_permutation_options<
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
S: Stark<F, D>,
const D: usize,
>(
stark: &S,
proof_with_pis: &StarkProofWithPublicInputs<F, C, D>,
challenges: &StarkProofChallenges<F, D>,
) -> Result<()> {
let options_is_some = [
proof_with_pis.proof.permutation_zs_cap.is_some(),
proof_with_pis.proof.openings.permutation_zs.is_some(),
proof_with_pis.proof.openings.permutation_zs_right.is_some(),
challenges.permutation_challenge_sets.is_some(),
];
ensure!(
options_is_some
.into_iter()
.all(|b| b == stark.uses_permutation_args()),
"Permutation data doesn't match with Stark configuration."
);
Ok(())
}
#[cfg(test)]
mod tests {
use plonky2::field::field_types::Field;
use plonky2::field::goldilocks_field::GoldilocksField;
use plonky2::field::polynomial::PolynomialValues;
use crate::verifier::eval_l_1_and_l_last;
#[test]
fn test_eval_l_1_and_l_last() {
type F = GoldilocksField;
let log_n = 5;
let n = 1 << log_n;
let x = F::rand(); // challenge point
let expected_l_first_x = PolynomialValues::selector(n, 0).ifft().eval(x);
let expected_l_last_x = PolynomialValues::selector(n, n - 1).ifft().eval(x);
let (l_first_x, l_last_x) = eval_l_1_and_l_last(log_n, x);
assert_eq!(l_first_x, expected_l_first_x);
assert_eq!(l_last_x, expected_l_last_x);
}
}