plonky2/evm/src/fixed_recursive_verifier.rs
2023-02-25 09:36:25 -08:00

631 lines
23 KiB
Rust

use std::collections::BTreeMap;
use std::ops::Range;
use itertools::Itertools;
use plonky2::field::extension::Extendable;
use plonky2::fri::FriParams;
use plonky2::gates::noop::NoopGate;
use plonky2::hash::hash_types::RichField;
use plonky2::hash::hashing::SPONGE_WIDTH;
use plonky2::iop::challenger::RecursiveChallenger;
use plonky2::iop::target::{BoolTarget, Target};
use plonky2::iop::witness::{PartialWitness, WitnessWrite};
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::circuit_data::{
CircuitConfig, CircuitData, CommonCircuitData, VerifierCircuitTarget,
};
use plonky2::plonk::config::{AlgebraicHasher, GenericConfig, Hasher};
use plonky2::plonk::proof::{ProofWithPublicInputs, ProofWithPublicInputsTarget};
use plonky2::recursion::cyclic_recursion::check_cyclic_proof_verifier_data;
use plonky2::util::timing::TimingTree;
use plonky2_util::log2_ceil;
use crate::all_stark::{all_cross_table_lookups, AllStark, Table, NUM_TABLES};
use crate::config::StarkConfig;
use crate::cpu::cpu_stark::CpuStark;
use crate::cross_table_lookup::{verify_cross_table_lookups_circuit, CrossTableLookup};
use crate::generation::GenerationInputs;
use crate::keccak::keccak_stark::KeccakStark;
use crate::keccak_sponge::keccak_sponge_stark::KeccakSpongeStark;
use crate::logic::LogicStark;
use crate::memory::memory_stark::MemoryStark;
use crate::permutation::{get_grand_product_challenge_set_target, GrandProductChallengeSet};
use crate::proof::StarkProofWithMetadata;
use crate::prover::prove;
use crate::recursive_verifier::{
add_common_recursion_gates, recursive_stark_circuit, PlonkWrapperCircuit, PublicInputs,
StarkWrapperCircuit,
};
use crate::stark::Stark;
/// The recursion threshold. We end a chain of recursive proofs once we reach this size.
const THRESHOLD_DEGREE_BITS: usize = 13;
/// Contains all recursive circuits used in the system. For each STARK and each initial
/// `degree_bits`, this contains a chain of recursive circuits for shrinking that STARK from
/// `degree_bits` to a constant `THRESHOLD_DEGREE_BITS`. It also contains a special root circuit
/// for combining each STARK's shrunk wrapper proof into a single proof.
pub struct AllRecursiveCircuits<F, C, const D: usize>
where
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
{
/// The EVM root circuit, which aggregates the (shrunk) per-table recursive proofs.
pub root: RootCircuitData<F, C, D>,
pub aggregation: AggregationCircuitData<F, C, D>,
/// The block circuit, which verifies an aggregation root proof and a previous block proof.
pub block: BlockCircuitData<F, C, D>,
/// Holds chains of circuits for each table and for each initial `degree_bits`.
by_table: [RecursiveCircuitsForTable<F, C, D>; NUM_TABLES],
}
/// Data for the EVM root circuit, which is used to combine each STARK's shrunk wrapper proof
/// into a single proof.
pub struct RootCircuitData<F, C, const D: usize>
where
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
{
circuit: CircuitData<F, C, D>,
proof_with_pis: [ProofWithPublicInputsTarget<D>; NUM_TABLES],
/// For each table, various inner circuits may be used depending on the initial table size.
/// This target holds the index of the circuit (within `final_circuits()`) that was used.
index_verifier_data: [Target; NUM_TABLES],
/// Public inputs used for cyclic verification. These aren't actually used for EVM root
/// proofs; the circuit has them just to match the structure of aggregation proofs.
cyclic_vk: VerifierCircuitTarget,
}
/// Data for the aggregation circuit, which is used to compress two proofs into one. Each inner
/// proof can be either an EVM root proof or another aggregation proof.
pub struct AggregationCircuitData<F, C, const D: usize>
where
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
{
circuit: CircuitData<F, C, D>,
lhs: AggregationChildTarget<D>,
rhs: AggregationChildTarget<D>,
cyclic_vk: VerifierCircuitTarget,
}
pub struct AggregationChildTarget<const D: usize> {
is_agg: BoolTarget,
agg_proof: ProofWithPublicInputsTarget<D>,
evm_proof: ProofWithPublicInputsTarget<D>,
}
pub struct BlockCircuitData<F, C, const D: usize>
where
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
{
circuit: CircuitData<F, C, D>,
has_parent_block: BoolTarget,
parent_block_proof: ProofWithPublicInputsTarget<D>,
agg_root_proof: ProofWithPublicInputsTarget<D>,
cyclic_vk: VerifierCircuitTarget,
}
impl<F, C, const D: usize> AllRecursiveCircuits<F, C, D>
where
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F> + 'static,
C::Hasher: AlgebraicHasher<F>,
[(); C::Hasher::HASH_SIZE]:,
[(); CpuStark::<F, D>::COLUMNS]:,
[(); KeccakStark::<F, D>::COLUMNS]:,
[(); KeccakSpongeStark::<F, D>::COLUMNS]:,
[(); LogicStark::<F, D>::COLUMNS]:,
[(); MemoryStark::<F, D>::COLUMNS]:,
{
/// Preprocess all recursive circuits used by the system.
pub fn new(
all_stark: &AllStark<F, D>,
degree_bits_range: Range<usize>,
stark_config: &StarkConfig,
) -> Self {
let cpu = RecursiveCircuitsForTable::new(
Table::Cpu,
&all_stark.cpu_stark,
degree_bits_range.clone(),
&all_stark.cross_table_lookups,
stark_config,
);
let keccak = RecursiveCircuitsForTable::new(
Table::Keccak,
&all_stark.keccak_stark,
degree_bits_range.clone(),
&all_stark.cross_table_lookups,
stark_config,
);
let keccak_sponge = RecursiveCircuitsForTable::new(
Table::KeccakSponge,
&all_stark.keccak_sponge_stark,
degree_bits_range.clone(),
&all_stark.cross_table_lookups,
stark_config,
);
let logic = RecursiveCircuitsForTable::new(
Table::Logic,
&all_stark.logic_stark,
degree_bits_range.clone(),
&all_stark.cross_table_lookups,
stark_config,
);
let memory = RecursiveCircuitsForTable::new(
Table::Memory,
&all_stark.memory_stark,
degree_bits_range,
&all_stark.cross_table_lookups,
stark_config,
);
let by_table = [cpu, keccak, keccak_sponge, logic, memory];
let root = Self::create_root_circuit(&by_table, stark_config);
let aggregation = Self::create_aggregation_circuit(&root);
let block = Self::create_block_circuit(&aggregation);
Self {
root,
aggregation,
block,
by_table,
}
}
fn create_root_circuit(
by_table: &[RecursiveCircuitsForTable<F, C, D>; NUM_TABLES],
stark_config: &StarkConfig,
) -> RootCircuitData<F, C, D> {
let inner_common_data: [_; NUM_TABLES] =
core::array::from_fn(|i| &by_table[i].final_circuits()[0].common);
let mut builder = CircuitBuilder::new(CircuitConfig::standard_recursion_config());
let recursive_proofs =
core::array::from_fn(|i| builder.add_virtual_proof_with_pis(inner_common_data[i]));
let pis: [_; NUM_TABLES] = core::array::from_fn(|i| {
PublicInputs::from_vec(&recursive_proofs[i].public_inputs, stark_config)
});
let index_verifier_data = core::array::from_fn(|_i| builder.add_virtual_target());
let mut challenger = RecursiveChallenger::<F, C::Hasher, D>::new(&mut builder);
for pi in &pis {
for h in &pi.trace_cap {
challenger.observe_elements(h);
}
}
let ctl_challenges = get_grand_product_challenge_set_target(
&mut builder,
&mut challenger,
stark_config.num_challenges,
);
// Check that the correct CTL challenges are used in every proof.
for pi in &pis {
for i in 0..stark_config.num_challenges {
builder.connect(
ctl_challenges.challenges[i].beta,
pi.ctl_challenges.challenges[i].beta,
);
builder.connect(
ctl_challenges.challenges[i].gamma,
pi.ctl_challenges.challenges[i].gamma,
);
}
}
let state = challenger.compact(&mut builder);
for k in 0..SPONGE_WIDTH {
builder.connect(state[k], pis[0].challenger_state_before[k]);
}
// Check that the challenger state is consistent between proofs.
for i in 1..NUM_TABLES {
for k in 0..SPONGE_WIDTH {
builder.connect(
pis[i].challenger_state_before[k],
pis[i - 1].challenger_state_after[k],
);
}
}
// Verify the CTL checks.
verify_cross_table_lookups_circuit::<F, D>(
&mut builder,
all_cross_table_lookups(),
pis.map(|p| p.ctl_zs_last),
stark_config,
);
for (i, table_circuits) in by_table.iter().enumerate() {
let final_circuits = table_circuits.final_circuits();
for final_circuit in &final_circuits {
assert_eq!(
&final_circuit.common, inner_common_data[i],
"common_data mismatch"
);
}
let mut possible_vks = final_circuits
.into_iter()
.map(|c| builder.constant_verifier_data(&c.verifier_only))
.collect_vec();
// random_access_verifier_data expects a vector whose length is a power of two.
// To satisfy this, we will just add some duplicates of the first VK.
while !possible_vks.len().is_power_of_two() {
possible_vks.push(possible_vks[0].clone());
}
let inner_verifier_data =
builder.random_access_verifier_data(index_verifier_data[i], possible_vks);
builder.verify_proof::<C>(
&recursive_proofs[i],
&inner_verifier_data,
inner_common_data[i],
);
}
// We want EVM root proofs to have the exact same structure as aggregation proofs, so we add
// public inputs for cyclic verification, even though they'll be ignored.
let cyclic_vk = builder.add_verifier_data_public_inputs();
RootCircuitData {
circuit: builder.build(),
proof_with_pis: recursive_proofs,
index_verifier_data,
cyclic_vk,
}
}
fn create_aggregation_circuit(
root: &RootCircuitData<F, C, D>,
) -> AggregationCircuitData<F, C, D> {
let mut builder = CircuitBuilder::<F, D>::new(root.circuit.common.config.clone());
let cyclic_vk = builder.add_verifier_data_public_inputs();
let lhs = Self::add_agg_child(&mut builder, root);
let rhs = Self::add_agg_child(&mut builder, root);
// Pad to match the root circuit's degree.
while log2_ceil(builder.num_gates()) < root.circuit.common.degree_bits() {
builder.add_gate(NoopGate, vec![]);
}
let circuit = builder.build::<C>();
AggregationCircuitData {
circuit,
lhs,
rhs,
cyclic_vk,
}
}
fn add_agg_child(
builder: &mut CircuitBuilder<F, D>,
root: &RootCircuitData<F, C, D>,
) -> AggregationChildTarget<D> {
let common = &root.circuit.common;
let root_vk = builder.constant_verifier_data(&root.circuit.verifier_only);
let is_agg = builder.add_virtual_bool_target_safe();
let agg_proof = builder.add_virtual_proof_with_pis(common);
let evm_proof = builder.add_virtual_proof_with_pis(common);
builder
.conditionally_verify_cyclic_proof::<C>(
is_agg, &agg_proof, &evm_proof, &root_vk, common,
)
.expect("Failed to build cyclic recursion circuit");
AggregationChildTarget {
is_agg,
agg_proof,
evm_proof,
}
}
fn create_block_circuit(agg: &AggregationCircuitData<F, C, D>) -> BlockCircuitData<F, C, D> {
// The block circuit is similar to the agg circuit; both verify two inner proofs.
// We need to adjust a few things, but it's easier than making a new CommonCircuitData.
let expected_common_data = CommonCircuitData {
fri_params: FriParams {
degree_bits: 14,
..agg.circuit.common.fri_params.clone()
},
..agg.circuit.common.clone()
};
let mut builder = CircuitBuilder::<F, D>::new(CircuitConfig::standard_recursion_config());
let has_parent_block = builder.add_virtual_bool_target_safe();
let parent_block_proof = builder.add_virtual_proof_with_pis(&expected_common_data);
let agg_root_proof = builder.add_virtual_proof_with_pis(&agg.circuit.common);
let cyclic_vk = builder.add_verifier_data_public_inputs();
builder
.conditionally_verify_cyclic_proof_or_dummy::<C>(
has_parent_block,
&parent_block_proof,
&expected_common_data,
)
.expect("Failed to build cyclic recursion circuit");
let agg_verifier_data = builder.constant_verifier_data(&agg.circuit.verifier_only);
builder.verify_proof::<C>(&agg_root_proof, &agg_verifier_data, &agg.circuit.common);
let circuit = builder.build::<C>();
BlockCircuitData {
circuit,
has_parent_block,
parent_block_proof,
agg_root_proof,
cyclic_vk,
}
}
/// Create a proof for each STARK, then combine them, eventually culminating in a root proof.
pub fn prove_root(
&self,
all_stark: &AllStark<F, D>,
config: &StarkConfig,
generation_inputs: GenerationInputs,
timing: &mut TimingTree,
) -> anyhow::Result<ProofWithPublicInputs<F, C, D>> {
let all_proof = prove::<F, C, D>(all_stark, config, generation_inputs, timing)?;
let mut root_inputs = PartialWitness::new();
for table in 0..NUM_TABLES {
let stark_proof = &all_proof.stark_proofs[table];
let original_degree_bits = stark_proof.proof.recover_degree_bits(config);
let table_circuits = &self.by_table[table];
let shrunk_proof = table_circuits.by_stark_size[&original_degree_bits]
.shrink(stark_proof, &all_proof.ctl_challenges)?;
let index_verifier_data = table_circuits
.by_stark_size
.keys()
.position(|&size| size == original_degree_bits)
.unwrap();
root_inputs.set_target(
self.root.index_verifier_data[table],
F::from_canonical_usize(index_verifier_data),
);
root_inputs.set_proof_with_pis_target(&self.root.proof_with_pis[table], &shrunk_proof);
}
root_inputs.set_verifier_data_target(
&self.root.cyclic_vk,
&self.aggregation.circuit.verifier_only,
);
self.root.circuit.prove(root_inputs)
}
pub fn verify_root(&self, agg_proof: ProofWithPublicInputs<F, C, D>) -> anyhow::Result<()> {
self.root.circuit.verify(agg_proof)
}
pub fn prove_aggregation(
&self,
lhs_is_agg: bool,
lhs_proof: &ProofWithPublicInputs<F, C, D>,
rhs_is_agg: bool,
rhs_proof: &ProofWithPublicInputs<F, C, D>,
) -> anyhow::Result<ProofWithPublicInputs<F, C, D>> {
let mut agg_inputs = PartialWitness::new();
agg_inputs.set_bool_target(self.aggregation.lhs.is_agg, lhs_is_agg);
agg_inputs.set_proof_with_pis_target(&self.aggregation.lhs.agg_proof, lhs_proof);
agg_inputs.set_proof_with_pis_target(&self.aggregation.lhs.evm_proof, lhs_proof);
agg_inputs.set_bool_target(self.aggregation.rhs.is_agg, rhs_is_agg);
agg_inputs.set_proof_with_pis_target(&self.aggregation.rhs.agg_proof, rhs_proof);
agg_inputs.set_proof_with_pis_target(&self.aggregation.rhs.evm_proof, rhs_proof);
agg_inputs.set_verifier_data_target(
&self.aggregation.cyclic_vk,
&self.aggregation.circuit.verifier_only,
);
self.aggregation.circuit.prove(agg_inputs)
}
pub fn verify_aggregation(
&self,
agg_proof: &ProofWithPublicInputs<F, C, D>,
) -> anyhow::Result<()> {
self.aggregation.circuit.verify(agg_proof.clone())?;
check_cyclic_proof_verifier_data(
agg_proof,
&self.aggregation.circuit.verifier_only,
&self.aggregation.circuit.common,
)
}
pub fn prove_block(
&self,
opt_parent_block_proof: Option<&ProofWithPublicInputs<F, C, D>>,
agg_root_proof: &ProofWithPublicInputs<F, C, D>,
) -> anyhow::Result<ProofWithPublicInputs<F, C, D>> {
let mut block_inputs = PartialWitness::new();
block_inputs.set_bool_target(
self.block.has_parent_block,
opt_parent_block_proof.is_some(),
);
if let Some(parent_block_proof) = opt_parent_block_proof {
block_inputs
.set_proof_with_pis_target(&self.block.parent_block_proof, parent_block_proof);
}
block_inputs.set_proof_with_pis_target(&self.block.agg_root_proof, agg_root_proof);
block_inputs
.set_verifier_data_target(&self.block.cyclic_vk, &self.block.circuit.verifier_only);
self.block.circuit.prove(block_inputs)
}
pub fn verify_block(&self, block_proof: &ProofWithPublicInputs<F, C, D>) -> anyhow::Result<()> {
self.block.circuit.verify(block_proof.clone())?;
check_cyclic_proof_verifier_data(
block_proof,
&self.block.circuit.verifier_only,
&self.block.circuit.common,
)
}
}
struct RecursiveCircuitsForTable<F, C, const D: usize>
where
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
{
/// A map from `log_2(height)` to a chain of shrinking recursion circuits starting at that
/// height.
by_stark_size: BTreeMap<usize, RecursiveCircuitsForTableSize<F, C, D>>,
}
impl<F, C, const D: usize> RecursiveCircuitsForTable<F, C, D>
where
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
C::Hasher: AlgebraicHasher<F>,
[(); C::Hasher::HASH_SIZE]:,
{
fn new<S: Stark<F, D>>(
table: Table,
stark: &S,
degree_bits_range: Range<usize>,
all_ctls: &[CrossTableLookup<F>],
stark_config: &StarkConfig,
) -> Self
where
[(); S::COLUMNS]:,
{
let by_stark_size = degree_bits_range
.map(|degree_bits| {
(
degree_bits,
RecursiveCircuitsForTableSize::new::<S>(
table,
stark,
degree_bits,
all_ctls,
stark_config,
),
)
})
.collect();
Self { by_stark_size }
}
/// For each initial `degree_bits`, get the final circuit at the end of that shrinking chain.
/// Each of these final circuits should have degree `THRESHOLD_DEGREE_BITS`.
fn final_circuits(&self) -> Vec<&CircuitData<F, C, D>> {
self.by_stark_size
.values()
.map(|chain| {
chain
.shrinking_wrappers
.last()
.map(|wrapper| &wrapper.circuit)
.unwrap_or(&chain.initial_wrapper.circuit)
})
.collect()
}
}
/// A chain of shrinking wrapper circuits, ending with a final circuit with `degree_bits`
/// `THRESHOLD_DEGREE_BITS`.
struct RecursiveCircuitsForTableSize<F, C, const D: usize>
where
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
{
initial_wrapper: StarkWrapperCircuit<F, C, D>,
shrinking_wrappers: Vec<PlonkWrapperCircuit<F, C, D>>,
}
impl<F, C, const D: usize> RecursiveCircuitsForTableSize<F, C, D>
where
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
C::Hasher: AlgebraicHasher<F>,
[(); C::Hasher::HASH_SIZE]:,
{
fn new<S: Stark<F, D>>(
table: Table,
stark: &S,
degree_bits: usize,
all_ctls: &[CrossTableLookup<F>],
stark_config: &StarkConfig,
) -> Self
where
[(); S::COLUMNS]:,
{
let initial_wrapper = recursive_stark_circuit(
table,
stark,
degree_bits,
all_ctls,
stark_config,
&shrinking_config(),
THRESHOLD_DEGREE_BITS,
);
let mut shrinking_wrappers = vec![];
// Shrinking recursion loop.
loop {
let last = shrinking_wrappers
.last()
.map(|wrapper: &PlonkWrapperCircuit<F, C, D>| &wrapper.circuit)
.unwrap_or(&initial_wrapper.circuit);
let last_degree_bits = last.common.degree_bits();
assert!(last_degree_bits >= THRESHOLD_DEGREE_BITS);
if last_degree_bits == THRESHOLD_DEGREE_BITS {
break;
}
let mut builder = CircuitBuilder::new(shrinking_config());
let proof_with_pis_target = builder.add_virtual_proof_with_pis(&last.common);
let last_vk = builder.constant_verifier_data(&last.verifier_only);
builder.verify_proof::<C>(&proof_with_pis_target, &last_vk, &last.common);
builder.register_public_inputs(&proof_with_pis_target.public_inputs); // carry PIs forward
add_common_recursion_gates(&mut builder);
let circuit = builder.build();
assert!(
circuit.common.degree_bits() < last_degree_bits,
"Couldn't shrink to expected recursion threshold of 2^{}; stalled at 2^{}",
THRESHOLD_DEGREE_BITS,
circuit.common.degree_bits()
);
shrinking_wrappers.push(PlonkWrapperCircuit {
circuit,
proof_with_pis_target,
});
}
Self {
initial_wrapper,
shrinking_wrappers,
}
}
fn shrink(
&self,
stark_proof_with_metadata: &StarkProofWithMetadata<F, C, D>,
ctl_challenges: &GrandProductChallengeSet<F>,
) -> anyhow::Result<ProofWithPublicInputs<F, C, D>> {
let mut proof = self
.initial_wrapper
.prove(stark_proof_with_metadata, ctl_challenges)?;
for wrapper_circuit in &self.shrinking_wrappers {
proof = wrapper_circuit.prove(&proof)?;
}
Ok(proof)
}
}
/// Our usual recursion threshold is 2^12 gates, but for these shrinking circuits, we use a few more
/// gates for a constant inner VK and for public inputs. This pushes us over the threshold to 2^13.
/// As long as we're at 2^13 gates, we might as well use a narrower witness.
fn shrinking_config() -> CircuitConfig {
CircuitConfig {
num_routed_wires: 40,
..CircuitConfig::standard_recursion_config()
}
}