plonky2/src/field/goldilocks_field.rs

350 lines
9.6 KiB
Rust

use std::fmt;
use std::fmt::{Debug, Display, Formatter};
use std::hash::{Hash, Hasher};
use std::iter::{Product, Sum};
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use num::BigUint;
use rand::Rng;
use serde::{Deserialize, Serialize};
use crate::field::extension_field::quadratic::QuadraticExtension;
use crate::field::extension_field::quartic::QuarticExtension;
use crate::field::extension_field::Extendable;
use crate::field::field_types::{Field, PrimeField, RichField};
use crate::field::inversion::try_inverse_u64;
use crate::util::assume;
const EPSILON: u64 = (1 << 32) - 1;
/// A field selected to have fast reduction.
///
/// Its order is 2^64 - 2^32 + 1.
/// ```ignore
/// P = 2**64 - EPSILON
/// = 2**64 - 2**32 + 1
/// = 2**32 * (2**32 - 1) + 1
/// ```
#[derive(Copy, Clone, Serialize, Deserialize)]
#[repr(transparent)]
pub struct GoldilocksField(pub u64);
impl Default for GoldilocksField {
fn default() -> Self {
Self::ZERO
}
}
impl PartialEq for GoldilocksField {
fn eq(&self, other: &Self) -> bool {
self.to_canonical_u64() == other.to_canonical_u64()
}
}
impl Eq for GoldilocksField {}
impl Hash for GoldilocksField {
fn hash<H: Hasher>(&self, state: &mut H) {
state.write_u64(self.to_canonical_u64())
}
}
impl Display for GoldilocksField {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
Display::fmt(&self.0, f)
}
}
impl Debug for GoldilocksField {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
Debug::fmt(&self.0, f)
}
}
impl Field for GoldilocksField {
type PrimeField = Self;
const ZERO: Self = Self(0);
const ONE: Self = Self(1);
const TWO: Self = Self(2);
const NEG_ONE: Self = Self(Self::ORDER - 1);
const CHARACTERISTIC: u64 = Self::ORDER;
const TWO_ADICITY: usize = 32;
// Sage: `g = GF(p).multiplicative_generator()`
const MULTIPLICATIVE_GROUP_GENERATOR: Self = Self(7);
// Sage:
// ```
// g_2 = g^((p - 1) / 2^32)
// g_2.multiplicative_order().factor()
// ```
const POWER_OF_TWO_GENERATOR: Self = Self(1753635133440165772);
fn order() -> BigUint {
Self::ORDER.into()
}
#[inline(always)]
fn try_inverse(&self) -> Option<Self> {
try_inverse_u64(self)
}
#[inline]
fn from_canonical_u64(n: u64) -> Self {
Self(n)
}
fn from_noncanonical_u128(n: u128) -> Self {
reduce128(n)
}
fn rand_from_rng<R: Rng>(rng: &mut R) -> Self {
Self::from_canonical_u64(rng.gen_range(0..Self::ORDER))
}
}
impl PrimeField for GoldilocksField {
const ORDER: u64 = 0xFFFFFFFF00000001;
#[inline]
fn to_canonical_u64(&self) -> u64 {
let mut c = self.0;
// We only need one condition subtraction, since 2 * ORDER would not fit in a u64.
if c >= Self::ORDER {
c -= Self::ORDER;
}
c
}
fn to_noncanonical_u64(&self) -> u64 {
self.0
}
#[inline]
fn from_noncanonical_u64(n: u64) -> Self {
Self(n)
}
}
impl Neg for GoldilocksField {
type Output = Self;
#[inline]
fn neg(self) -> Self {
if self.is_zero() {
Self::ZERO
} else {
Self(Self::ORDER - self.to_canonical_u64())
}
}
}
impl Add for GoldilocksField {
type Output = Self;
#[inline]
#[allow(clippy::suspicious_arithmetic_impl)]
fn add(self, rhs: Self) -> Self {
let (sum, over) = self.0.overflowing_add(rhs.to_canonical_u64());
Self(sum.wrapping_sub((over as u64) * Self::ORDER))
}
}
impl AddAssign for GoldilocksField {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl Sum for GoldilocksField {
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::ZERO, |acc, x| acc + x)
}
}
impl Sub for GoldilocksField {
type Output = Self;
#[inline]
#[allow(clippy::suspicious_arithmetic_impl)]
fn sub(self, rhs: Self) -> Self {
let (diff, under) = self.0.overflowing_sub(rhs.to_canonical_u64());
Self(diff.wrapping_add((under as u64) * Self::ORDER))
}
}
impl SubAssign for GoldilocksField {
#[inline]
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl Mul for GoldilocksField {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self {
reduce128((self.0 as u128) * (rhs.0 as u128))
}
}
impl MulAssign for GoldilocksField {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl Product for GoldilocksField {
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::ONE, |acc, x| acc * x)
}
}
impl Div for GoldilocksField {
type Output = Self;
#[allow(clippy::suspicious_arithmetic_impl)]
fn div(self, rhs: Self) -> Self::Output {
self * rhs.inverse()
}
}
impl DivAssign for GoldilocksField {
fn div_assign(&mut self, rhs: Self) {
*self = *self / rhs;
}
}
impl Extendable<2> for GoldilocksField {
type Extension = QuadraticExtension<Self>;
// Verifiable in Sage with
// `R.<x> = GF(p)[]; assert (x^2 - 7).is_irreducible()`.
const W: Self = Self(7);
// DTH_ROOT = W^((ORDER - 1)/2)
const DTH_ROOT: Self = Self(18446744069414584320);
const EXT_MULTIPLICATIVE_GROUP_GENERATOR: [Self; 2] =
[Self(18081566051660590251), Self(16121475356294670766)];
const EXT_POWER_OF_TWO_GENERATOR: [Self; 2] = [Self(0), Self(15659105665374529263)];
}
impl Extendable<4> for GoldilocksField {
type Extension = QuarticExtension<Self>;
const W: Self = Self(7);
// DTH_ROOT = W^((ORDER - 1)/4)
const DTH_ROOT: Self = Self(281474976710656);
const EXT_MULTIPLICATIVE_GROUP_GENERATOR: [Self; 4] = [
Self(5024755240244648895),
Self(13227474371289740625),
Self(3912887029498544536),
Self(3900057112666848848),
];
const EXT_POWER_OF_TWO_GENERATOR: [Self; 4] =
[Self(0), Self(0), Self(0), Self(12587610116473453104)];
}
impl RichField for GoldilocksField {}
/// Fast addition modulo ORDER for x86-64.
/// This function is marked unsafe for the following reasons:
/// - It is only correct if x + y < 2**64 + ORDER = 0x1ffffffff00000001.
/// - It is only faster in some circumstances. In particular, on x86 it overwrites both inputs in
/// the registers, so its use is not recommended when either input will be used again.
#[inline(always)]
#[cfg(target_arch = "x86_64")]
unsafe fn add_with_wraparound(x: u64, y: u64) -> u64 {
let res_wrapped: u64;
let adjustment: u64;
asm!(
"add {0}, {1}",
// Trick. The carry flag is set iff the addition overflowed.
// sbb x, y does x := x - y - CF. In our case, x and y are both {1:e}, so it simply does
// {1:e} := 0xffffffff on overflow and {1:e} := 0 otherwise. {1:e} is the low 32 bits of
// {1}; the high 32-bits are zeroed on write. In the end, we end up with 0xffffffff in {1}
// on overflow; this happens be EPSILON.
// Note that the CPU does not realize that the result of sbb x, x does not actually depend
// on x. We must write the result to a register that we know to be ready. We have a
// dependency on {1} anyway, so let's use it.
"sbb {1:e}, {1:e}",
inlateout(reg) x => res_wrapped,
inlateout(reg) y => adjustment,
options(pure, nomem, nostack),
);
assume(x != 0 || (res_wrapped == y && adjustment == 0));
assume(y != 0 || (res_wrapped == x && adjustment == 0));
res_wrapped.wrapping_add(adjustment) // Add EPSILON == subtract ORDER.
}
#[inline(always)]
#[cfg(not(target_arch = "x86_64"))]
unsafe fn add_with_wraparound(x: u64, y: u64) -> u64 {
let (res_wrapped, carry) = x.overflowing_add(y);
res_wrapped.wrapping_add(EPSILON * (carry as u64))
}
/// Fast subtraction modulo ORDER for x86-64.
/// This function is marked unsafe for the following reasons:
/// - It is only correct if x - y >= -ORDER.
/// - It is only faster in some circumstances. In particular, on x86 it overwrites both inputs in
/// the registers, so its use is not recommended when either input will be used again.
#[inline(always)]
#[cfg(target_arch = "x86_64")]
unsafe fn sub_with_wraparound(x: u64, y: u64) -> u64 {
let res_wrapped: u64;
let adjustment: u64;
asm!(
"sub {0}, {1}",
"sbb {1:e}, {1:e}", // See add_with_wraparound.
inlateout(reg) x => res_wrapped,
inlateout(reg) y => adjustment,
options(pure, nomem, nostack),
);
assume(y != 0 || (res_wrapped == x && adjustment == 0));
res_wrapped.wrapping_sub(adjustment) // Subtract EPSILON == add ORDER.
}
#[inline(always)]
#[cfg(not(target_arch = "x86_64"))]
unsafe fn sub_with_wraparound(x: u64, y: u64) -> u64 {
let (res_wrapped, borrow) = x.overflowing_sub(y);
res_wrapped.wrapping_sub(EPSILON * (borrow as u64))
}
/// Reduces to a 64-bit value. The result might not be in canonical form; it could be in between the
/// field order and `2^64`.
#[inline]
fn reduce128(x: u128) -> GoldilocksField {
let (x_lo, x_hi) = split(x); // This is a no-op
let x_hi_hi = x_hi >> 32;
let x_hi_lo = x_hi & EPSILON;
let t0 = unsafe { sub_with_wraparound(x_lo, x_hi_hi) };
let t1 = x_hi_lo * EPSILON;
let t2 = unsafe { add_with_wraparound(t0, t1) };
GoldilocksField(t2)
}
#[inline]
fn split(x: u128) -> (u64, u64) {
(x as u64, (x >> 64) as u64)
}
#[cfg(test)]
mod tests {
use crate::{test_field_arithmetic, test_prime_field_arithmetic};
test_prime_field_arithmetic!(crate::field::goldilocks_field::GoldilocksField);
test_field_arithmetic!(crate::field::goldilocks_field::GoldilocksField);
}