mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-04 14:53:08 +00:00
358 lines
11 KiB
Rust
358 lines
11 KiB
Rust
use std::ops::Add;
|
|
|
|
use rand::Rng;
|
|
|
|
use crate::extension_tower::{FieldExt, Fp12, Fp2, Fp6, BN254};
|
|
|
|
// The curve consists of pairs (x, y): (BN254, BN254) | y^2 = x^3 + 2
|
|
#[derive(Debug, Copy, Clone, PartialEq)]
|
|
pub struct Curve {
|
|
pub x: BN254,
|
|
pub y: BN254,
|
|
}
|
|
|
|
/// Standard addition formula for elliptic curves, restricted to the cases
|
|
/// where neither inputs nor output would ever be the identity O. source:
|
|
/// https://en.wikipedia.org/wiki/Elliptic_curve#Algebraic_interpretation
|
|
impl Add for Curve {
|
|
type Output = Self;
|
|
|
|
fn add(self, other: Self) -> Self {
|
|
let m = if self == other {
|
|
BN254::new(3) * self.x * self.x / (BN254::new(2) * self.y)
|
|
} else {
|
|
(other.y - self.y) / (other.x - self.x)
|
|
};
|
|
let x = m * m - (self.x + other.x);
|
|
Curve {
|
|
x,
|
|
y: m * (self.x - x) - self.y,
|
|
}
|
|
}
|
|
}
|
|
|
|
// The twisted curve consists of pairs (x, y): (Fp2, Fp2) | y^2 = x^3 + 3/(9 + i)
|
|
#[derive(Debug, Copy, Clone, PartialEq)]
|
|
pub struct TwistedCurve {
|
|
pub x: Fp2<BN254>,
|
|
pub y: Fp2<BN254>,
|
|
}
|
|
|
|
// The tate pairing takes a point each from the curve and its twist and outputs an Fp12 element
|
|
pub fn tate(p: Curve, q: TwistedCurve) -> Fp12<BN254> {
|
|
let miller_output = miller_loop(p, q);
|
|
invariant_exponent(miller_output)
|
|
}
|
|
|
|
/// Standard code for miller loop, can be found on page 99 at this url:
|
|
/// https://static1.squarespace.com/static/5fdbb09f31d71c1227082339/t/5ff394720493bd28278889c6/1609798774687/PairingsForBeginners.pdf#page=107
|
|
/// where EXP is a hardcoding of the array of Booleans that the loop traverses
|
|
pub fn miller_loop(p: Curve, q: TwistedCurve) -> Fp12<BN254> {
|
|
let mut r = p;
|
|
let mut acc: Fp12<BN254> = Fp12::<BN254>::UNIT;
|
|
let mut line: Fp12<BN254>;
|
|
|
|
for i in EXP {
|
|
line = tangent(r, q);
|
|
r = r + r;
|
|
acc = line * acc * acc;
|
|
if i {
|
|
line = cord(p, r, q);
|
|
r = r + p;
|
|
acc = line * acc;
|
|
}
|
|
}
|
|
acc
|
|
}
|
|
|
|
/// The sloped line function for doubling a point
|
|
pub fn tangent(p: Curve, q: TwistedCurve) -> Fp12<BN254> {
|
|
let cx = -BN254::new(3) * p.x * p.x;
|
|
let cy = BN254::new(2) * p.y;
|
|
sparse_embed(p.y * p.y - BN254::new(9), q.x * cx, q.y * cy)
|
|
}
|
|
|
|
/// The sloped line function for adding two points
|
|
pub fn cord(p1: Curve, p2: Curve, q: TwistedCurve) -> Fp12<BN254> {
|
|
let cx = p2.y - p1.y;
|
|
let cy = p1.x - p2.x;
|
|
sparse_embed(p1.y * p2.x - p2.y * p1.x, q.x * cx, q.y * cy)
|
|
}
|
|
|
|
/// The tangent and cord functions output sparse Fp12 elements.
|
|
/// This map embeds the nonzero coefficients into an Fp12.
|
|
pub fn sparse_embed(g000: BN254, g01: Fp2<BN254>, g11: Fp2<BN254>) -> Fp12<BN254> {
|
|
let g0 = Fp6 {
|
|
t0: Fp2 {
|
|
re: g000,
|
|
im: BN254::ZERO,
|
|
},
|
|
t1: g01,
|
|
t2: Fp2::<BN254>::ZERO,
|
|
};
|
|
|
|
let g1 = Fp6 {
|
|
t0: Fp2::<BN254>::ZERO,
|
|
t1: g11,
|
|
t2: Fp2::<BN254>::ZERO,
|
|
};
|
|
|
|
Fp12 { z0: g0, z1: g1 }
|
|
}
|
|
|
|
pub fn gen_fp12_sparse<R: Rng + ?Sized>(rng: &mut R) -> Fp12<BN254> {
|
|
sparse_embed(
|
|
rng.gen::<BN254>(),
|
|
rng.gen::<Fp2<BN254>>(),
|
|
rng.gen::<Fp2<BN254>>(),
|
|
)
|
|
}
|
|
|
|
/// The output y of the miller loop is not an invariant,
|
|
/// but one gets an invariant by raising y to the power
|
|
/// (p^12 - 1)/N = (p^6 - 1)(p^2 + 1)(p^4 - p^2 + 1)/N
|
|
/// where N is the cyclic group order of the curve.
|
|
/// To achieve this, we first exponentiate y by p^6 - 1 via
|
|
/// y = y_6 / y
|
|
/// and then exponentiate the result by p^2 + 1 via
|
|
/// y = y_2 * y
|
|
/// We then note that (p^4 - p^2 + 1)/N can be rewritten as
|
|
/// (p^4 - p^2 + 1)/N = p^3 + (a2)p^2 - (a1)p - a0
|
|
/// where 0 < a0, a1, a2 < p. Then the final power is given by
|
|
/// y = y_3 * (y^a2)_2 * (y^-a1)_1 * (y^-a0)
|
|
pub fn invariant_exponent(f: Fp12<BN254>) -> Fp12<BN254> {
|
|
let mut y = f.frob(6) / f;
|
|
y = y.frob(2) * y;
|
|
let (y_a2, y_a1, y_a0) = get_custom_powers(y);
|
|
y.frob(3) * y_a2.frob(2) * y_a1.frob(1) * y_a0
|
|
}
|
|
|
|
/// We first together (so as to avoid repeated steps) compute
|
|
/// y^a4, y^a2, y^a0
|
|
/// where a1 is given by
|
|
/// a1 = a4 + 2a2 - a0
|
|
/// we then invert y^a0 and return
|
|
/// y^a2, y^a1 = y^a4 * y^a2 * y^a2 * y^(-a0), y^(-a0)
|
|
///
|
|
/// Representing a4, a2, a0 in *little endian* binary, define
|
|
/// EXPS4 = [(a4[i], a2[i], a0[i]) for i in 0..len(a4)]
|
|
/// EXPS2 = [ (a2[i], a0[i]) for i in len(a4)..len(a2)]
|
|
/// EXPS0 = [ a0[i] for i in len(a2)..len(a0)]
|
|
fn get_custom_powers(f: Fp12<BN254>) -> (Fp12<BN254>, Fp12<BN254>, Fp12<BN254>) {
|
|
let mut sq: Fp12<BN254> = f;
|
|
let mut y0: Fp12<BN254> = Fp12::<BN254>::UNIT;
|
|
let mut y2: Fp12<BN254> = Fp12::<BN254>::UNIT;
|
|
let mut y4: Fp12<BN254> = Fp12::<BN254>::UNIT;
|
|
|
|
// proceed via standard squaring algorithm for exponentiation
|
|
|
|
// must keep multiplying all three values: a4, a2, a0
|
|
for (a, b, c) in EXPS4 {
|
|
if a {
|
|
y4 = y4 * sq;
|
|
}
|
|
if b {
|
|
y2 = y2 * sq;
|
|
}
|
|
if c {
|
|
y0 = y0 * sq;
|
|
}
|
|
sq = sq * sq;
|
|
}
|
|
// leading term of a4 is always 1
|
|
y4 = y4 * sq;
|
|
|
|
// must keep multiplying remaining two values: a2, a0
|
|
for (a, b) in EXPS2 {
|
|
if a {
|
|
y2 = y2 * sq;
|
|
}
|
|
if b {
|
|
y0 = y0 * sq;
|
|
}
|
|
sq = sq * sq;
|
|
}
|
|
// leading term of a2 is always 1
|
|
y2 = y2 * sq;
|
|
|
|
// must keep multiplying final remaining value: a0
|
|
for a in EXPS0 {
|
|
if a {
|
|
y0 = y0 * sq;
|
|
}
|
|
sq = sq * sq;
|
|
}
|
|
// leading term of a0 is always 1
|
|
y0 = y0 * sq;
|
|
|
|
// invert y0 to compute y^(-a0)
|
|
let y0_inv = y0.inv();
|
|
|
|
// return y^a2 = y2, y^a1 = y4 * y2^2 * y^(-a0), y^(-a0)
|
|
(y2, y4 * y2 * y2 * y0_inv, y0_inv)
|
|
}
|
|
|
|
const EXP: [bool; 253] = [
|
|
true, false, false, false, false, false, true, true, false, false, true, false, false, false,
|
|
true, false, false, true, true, true, false, false, true, true, true, false, false, true,
|
|
false, true, true, true, false, false, false, false, true, false, false, true, true, false,
|
|
false, false, true, true, false, true, false, false, false, false, false, false, false, true,
|
|
false, true, false, false, true, true, false, true, true, true, false, false, false, false,
|
|
true, false, true, false, false, false, false, false, true, false, false, false, true, false,
|
|
true, true, false, true, true, false, true, true, false, true, false, false, false, false,
|
|
false, false, true, true, false, false, false, false, false, false, true, false, true, false,
|
|
true, true, false, false, false, false, true, false, true, true, true, false, true, false,
|
|
false, true, false, true, false, false, false, false, false, true, true, false, false, true,
|
|
true, true, true, true, false, true, false, false, false, false, true, false, false, true,
|
|
false, false, false, false, true, true, true, true, false, false, true, true, false, true,
|
|
true, true, false, false, true, false, true, true, true, false, false, false, false, true,
|
|
false, false, true, false, false, false, true, false, true, false, false, false, false, true,
|
|
true, true, true, true, false, false, false, false, true, true, true, true, true, false, true,
|
|
false, true, true, false, false, true, false, false, true, true, true, true, true, true, false,
|
|
false, false, false, false, false, false, false, false, false, false, false, false, false,
|
|
false, false, false, false, false, false, false, false, false, false, false, false, false,
|
|
false,
|
|
];
|
|
|
|
// The folowing constants are defined above get_custom_powers
|
|
|
|
const EXPS4: [(bool, bool, bool); 64] = [
|
|
(true, true, false),
|
|
(true, true, true),
|
|
(true, true, true),
|
|
(false, false, false),
|
|
(false, false, true),
|
|
(true, false, true),
|
|
(false, true, false),
|
|
(true, false, true),
|
|
(true, true, false),
|
|
(true, false, true),
|
|
(false, true, false),
|
|
(true, true, false),
|
|
(true, true, false),
|
|
(true, true, false),
|
|
(false, true, false),
|
|
(false, true, false),
|
|
(false, false, true),
|
|
(true, false, true),
|
|
(true, true, false),
|
|
(false, true, false),
|
|
(true, true, false),
|
|
(true, true, false),
|
|
(true, true, false),
|
|
(false, false, true),
|
|
(false, false, true),
|
|
(true, false, true),
|
|
(true, false, true),
|
|
(true, true, false),
|
|
(true, false, false),
|
|
(true, true, false),
|
|
(false, true, false),
|
|
(true, true, false),
|
|
(true, false, false),
|
|
(false, true, false),
|
|
(false, false, false),
|
|
(true, false, false),
|
|
(true, false, false),
|
|
(true, false, true),
|
|
(false, false, true),
|
|
(false, true, true),
|
|
(false, false, true),
|
|
(false, true, true),
|
|
(false, true, true),
|
|
(false, false, false),
|
|
(true, true, true),
|
|
(true, false, true),
|
|
(true, false, true),
|
|
(false, true, true),
|
|
(true, false, true),
|
|
(false, true, true),
|
|
(false, true, true),
|
|
(true, true, false),
|
|
(true, true, false),
|
|
(true, true, false),
|
|
(true, false, false),
|
|
(false, false, true),
|
|
(true, false, false),
|
|
(false, false, true),
|
|
(true, false, true),
|
|
(true, true, false),
|
|
(true, true, true),
|
|
(false, true, true),
|
|
(false, true, false),
|
|
(true, true, true),
|
|
];
|
|
|
|
const EXPS2: [(bool, bool); 62] = [
|
|
(true, false),
|
|
(true, true),
|
|
(false, false),
|
|
(true, false),
|
|
(true, false),
|
|
(true, true),
|
|
(true, false),
|
|
(true, true),
|
|
(true, false),
|
|
(false, true),
|
|
(false, true),
|
|
(true, true),
|
|
(true, true),
|
|
(false, false),
|
|
(true, true),
|
|
(false, false),
|
|
(false, false),
|
|
(false, true),
|
|
(false, true),
|
|
(true, true),
|
|
(true, true),
|
|
(true, true),
|
|
(false, true),
|
|
(true, true),
|
|
(false, false),
|
|
(true, true),
|
|
(true, false),
|
|
(true, true),
|
|
(false, false),
|
|
(true, true),
|
|
(true, true),
|
|
(true, false),
|
|
(false, false),
|
|
(false, true),
|
|
(false, false),
|
|
(true, true),
|
|
(false, true),
|
|
(false, false),
|
|
(true, false),
|
|
(false, true),
|
|
(false, true),
|
|
(true, false),
|
|
(false, true),
|
|
(false, false),
|
|
(false, false),
|
|
(false, false),
|
|
(false, true),
|
|
(true, false),
|
|
(true, true),
|
|
(false, true),
|
|
(true, true),
|
|
(true, false),
|
|
(false, true),
|
|
(false, false),
|
|
(true, false),
|
|
(false, true),
|
|
(true, false),
|
|
(true, true),
|
|
(true, false),
|
|
(true, true),
|
|
(false, true),
|
|
(true, true),
|
|
];
|
|
|
|
const EXPS0: [bool; 65] = [
|
|
false, false, true, false, false, true, true, false, true, false, true, true, true, false,
|
|
true, false, false, false, true, false, false, true, false, true, false, true, true, false,
|
|
false, false, false, false, true, false, true, false, true, true, true, false, false, true,
|
|
true, true, true, false, true, false, true, true, false, false, true, false, false, false,
|
|
true, true, true, true, false, false, true, true, false,
|
|
];
|