mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-06 15:53:10 +00:00
* Most gates support packed evaluation * ComparisonGate * Minor: outdated todo marker * Revert superfluous change * Post-merge fixes * Daniel comments * Minor: Markdown in comments
437 lines
15 KiB
Rust
437 lines
15 KiB
Rust
use std::marker::PhantomData;
|
|
|
|
use itertools::Itertools;
|
|
|
|
use crate::field::extension_field::target::ExtensionTarget;
|
|
use crate::field::extension_field::Extendable;
|
|
use crate::field::field_types::Field;
|
|
use crate::field::packed_field::PackedField;
|
|
use crate::gates::gate::Gate;
|
|
use crate::gates::packed_util::PackedEvaluableBase;
|
|
use crate::gates::util::StridedConstraintConsumer;
|
|
use crate::iop::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
|
|
use crate::iop::target::Target;
|
|
use crate::iop::wire::Wire;
|
|
use crate::iop::witness::{PartitionWitness, Witness};
|
|
use crate::plonk::circuit_builder::CircuitBuilder;
|
|
use crate::plonk::circuit_data::CircuitConfig;
|
|
use crate::plonk::vars::{
|
|
EvaluationTargets, EvaluationVars, EvaluationVarsBase, EvaluationVarsBaseBatch,
|
|
EvaluationVarsBasePacked,
|
|
};
|
|
|
|
/// A gate for checking that a particular element of a list matches a given value.
|
|
#[derive(Copy, Clone, Debug)]
|
|
pub(crate) struct RandomAccessGate<F: Extendable<D>, const D: usize> {
|
|
pub bits: usize,
|
|
pub num_copies: usize,
|
|
_phantom: PhantomData<F>,
|
|
}
|
|
|
|
impl<F: Extendable<D>, const D: usize> RandomAccessGate<F, D> {
|
|
fn new(num_copies: usize, bits: usize) -> Self {
|
|
Self {
|
|
bits,
|
|
num_copies,
|
|
_phantom: PhantomData,
|
|
}
|
|
}
|
|
|
|
pub fn new_from_config(config: &CircuitConfig, bits: usize) -> Self {
|
|
let vec_size = 1 << bits;
|
|
// Need `(2 + vec_size) * num_copies` routed wires
|
|
let max_copies = (config.num_routed_wires / (2 + vec_size)).min(
|
|
// Need `(2 + vec_size + bits) * num_copies` wires
|
|
config.num_wires / (2 + vec_size + bits),
|
|
);
|
|
Self::new(max_copies, bits)
|
|
}
|
|
|
|
fn vec_size(&self) -> usize {
|
|
1 << self.bits
|
|
}
|
|
|
|
pub fn wire_access_index(&self, copy: usize) -> usize {
|
|
debug_assert!(copy < self.num_copies);
|
|
(2 + self.vec_size()) * copy
|
|
}
|
|
|
|
pub fn wire_claimed_element(&self, copy: usize) -> usize {
|
|
debug_assert!(copy < self.num_copies);
|
|
(2 + self.vec_size()) * copy + 1
|
|
}
|
|
|
|
pub fn wire_list_item(&self, i: usize, copy: usize) -> usize {
|
|
debug_assert!(i < self.vec_size());
|
|
debug_assert!(copy < self.num_copies);
|
|
(2 + self.vec_size()) * copy + 2 + i
|
|
}
|
|
|
|
fn start_of_intermediate_wires(&self) -> usize {
|
|
(2 + self.vec_size()) * self.num_copies
|
|
}
|
|
|
|
pub(crate) fn num_routed_wires(&self) -> usize {
|
|
self.start_of_intermediate_wires()
|
|
}
|
|
|
|
/// An intermediate wire where the prover gives the (purported) binary decomposition of the
|
|
/// index.
|
|
pub fn wire_bit(&self, i: usize, copy: usize) -> usize {
|
|
debug_assert!(i < self.bits);
|
|
debug_assert!(copy < self.num_copies);
|
|
self.start_of_intermediate_wires() + copy * self.bits + i
|
|
}
|
|
}
|
|
|
|
impl<F: Extendable<D>, const D: usize> Gate<F, D> for RandomAccessGate<F, D> {
|
|
fn id(&self) -> String {
|
|
format!("{:?}<D={}>", self, D)
|
|
}
|
|
|
|
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
|
|
let mut constraints = Vec::with_capacity(self.num_constraints());
|
|
|
|
for copy in 0..self.num_copies {
|
|
let access_index = vars.local_wires[self.wire_access_index(copy)];
|
|
let mut list_items = (0..self.vec_size())
|
|
.map(|i| vars.local_wires[self.wire_list_item(i, copy)])
|
|
.collect::<Vec<_>>();
|
|
let claimed_element = vars.local_wires[self.wire_claimed_element(copy)];
|
|
let bits = (0..self.bits)
|
|
.map(|i| vars.local_wires[self.wire_bit(i, copy)])
|
|
.collect::<Vec<_>>();
|
|
|
|
// Assert that each bit wire value is indeed boolean.
|
|
for &b in &bits {
|
|
constraints.push(b * (b - <F::Extension as Field>::ONE));
|
|
}
|
|
|
|
// Assert that the binary decomposition was correct.
|
|
let reconstructed_index = bits
|
|
.iter()
|
|
.rev()
|
|
.fold(<F::Extension as Field>::ZERO, |acc, &b| acc.double() + b);
|
|
constraints.push(reconstructed_index - access_index);
|
|
|
|
// Repeatedly fold the list, selecting the left or right item from each pair based on
|
|
// the corresponding bit.
|
|
for b in bits {
|
|
list_items = list_items
|
|
.iter()
|
|
.tuples()
|
|
.map(|(&x, &y)| x + b * (y - x))
|
|
.collect()
|
|
}
|
|
|
|
debug_assert_eq!(list_items.len(), 1);
|
|
constraints.push(list_items[0] - claimed_element);
|
|
}
|
|
|
|
constraints
|
|
}
|
|
|
|
fn eval_unfiltered_base_one(
|
|
&self,
|
|
_vars: EvaluationVarsBase<F>,
|
|
_yield_constr: StridedConstraintConsumer<F>,
|
|
) {
|
|
panic!("use eval_unfiltered_base_packed instead");
|
|
}
|
|
|
|
fn eval_unfiltered_base_batch(&self, vars_base: EvaluationVarsBaseBatch<F>) -> Vec<F> {
|
|
self.eval_unfiltered_base_batch_packed(vars_base)
|
|
}
|
|
|
|
fn eval_unfiltered_recursively(
|
|
&self,
|
|
builder: &mut CircuitBuilder<F, D>,
|
|
vars: EvaluationTargets<D>,
|
|
) -> Vec<ExtensionTarget<D>> {
|
|
let zero = builder.zero_extension();
|
|
let two = builder.two_extension();
|
|
let mut constraints = Vec::with_capacity(self.num_constraints());
|
|
|
|
for copy in 0..self.num_copies {
|
|
let access_index = vars.local_wires[self.wire_access_index(copy)];
|
|
let mut list_items = (0..self.vec_size())
|
|
.map(|i| vars.local_wires[self.wire_list_item(i, copy)])
|
|
.collect::<Vec<_>>();
|
|
let claimed_element = vars.local_wires[self.wire_claimed_element(copy)];
|
|
let bits = (0..self.bits)
|
|
.map(|i| vars.local_wires[self.wire_bit(i, copy)])
|
|
.collect::<Vec<_>>();
|
|
|
|
// Assert that each bit wire value is indeed boolean.
|
|
for &b in &bits {
|
|
constraints.push(builder.mul_sub_extension(b, b, b));
|
|
}
|
|
|
|
// Assert that the binary decomposition was correct.
|
|
let reconstructed_index = bits
|
|
.iter()
|
|
.rev()
|
|
.fold(zero, |acc, &b| builder.mul_add_extension(acc, two, b));
|
|
constraints.push(builder.sub_extension(reconstructed_index, access_index));
|
|
|
|
// Repeatedly fold the list, selecting the left or right item from each pair based on
|
|
// the corresponding bit.
|
|
for b in bits {
|
|
list_items = list_items
|
|
.iter()
|
|
.tuples()
|
|
.map(|(&x, &y)| builder.select_ext_generalized(b, y, x))
|
|
.collect()
|
|
}
|
|
|
|
debug_assert_eq!(list_items.len(), 1);
|
|
constraints.push(builder.sub_extension(list_items[0], claimed_element));
|
|
}
|
|
|
|
constraints
|
|
}
|
|
|
|
fn generators(
|
|
&self,
|
|
gate_index: usize,
|
|
_local_constants: &[F],
|
|
) -> Vec<Box<dyn WitnessGenerator<F>>> {
|
|
(0..self.num_copies)
|
|
.map(|copy| {
|
|
let g: Box<dyn WitnessGenerator<F>> = Box::new(
|
|
RandomAccessGenerator {
|
|
gate_index,
|
|
gate: *self,
|
|
copy,
|
|
}
|
|
.adapter(),
|
|
);
|
|
g
|
|
})
|
|
.collect::<Vec<_>>()
|
|
}
|
|
|
|
fn num_wires(&self) -> usize {
|
|
self.wire_bit(self.bits - 1, self.num_copies - 1) + 1
|
|
}
|
|
|
|
fn num_constants(&self) -> usize {
|
|
0
|
|
}
|
|
|
|
fn degree(&self) -> usize {
|
|
self.bits + 1
|
|
}
|
|
|
|
fn num_constraints(&self) -> usize {
|
|
let constraints_per_copy = self.bits + 2;
|
|
self.num_copies * constraints_per_copy
|
|
}
|
|
}
|
|
|
|
impl<F: Extendable<D>, const D: usize> PackedEvaluableBase<F, D> for RandomAccessGate<F, D> {
|
|
fn eval_unfiltered_base_packed<P: PackedField<Scalar = F>>(
|
|
&self,
|
|
vars: EvaluationVarsBasePacked<P>,
|
|
mut yield_constr: StridedConstraintConsumer<P>,
|
|
) {
|
|
for copy in 0..self.num_copies {
|
|
let access_index = vars.local_wires[self.wire_access_index(copy)];
|
|
let mut list_items = (0..self.vec_size())
|
|
.map(|i| vars.local_wires[self.wire_list_item(i, copy)])
|
|
.collect::<Vec<_>>();
|
|
let claimed_element = vars.local_wires[self.wire_claimed_element(copy)];
|
|
let bits = (0..self.bits)
|
|
.map(|i| vars.local_wires[self.wire_bit(i, copy)])
|
|
.collect::<Vec<_>>();
|
|
|
|
// Assert that each bit wire value is indeed boolean.
|
|
for &b in &bits {
|
|
yield_constr.one(b * (b - F::ONE));
|
|
}
|
|
|
|
// Assert that the binary decomposition was correct.
|
|
let reconstructed_index = bits.iter().rev().fold(P::ZERO, |acc, &b| acc + acc + b);
|
|
yield_constr.one(reconstructed_index - access_index);
|
|
|
|
// Repeatedly fold the list, selecting the left or right item from each pair based on
|
|
// the corresponding bit.
|
|
for b in bits {
|
|
list_items = list_items
|
|
.iter()
|
|
.tuples()
|
|
.map(|(&x, &y)| x + b * (y - x))
|
|
.collect()
|
|
}
|
|
|
|
debug_assert_eq!(list_items.len(), 1);
|
|
yield_constr.one(list_items[0] - claimed_element);
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct RandomAccessGenerator<F: Extendable<D>, const D: usize> {
|
|
gate_index: usize,
|
|
gate: RandomAccessGate<F, D>,
|
|
copy: usize,
|
|
}
|
|
|
|
impl<F: Extendable<D>, const D: usize> SimpleGenerator<F> for RandomAccessGenerator<F, D> {
|
|
fn dependencies(&self) -> Vec<Target> {
|
|
let local_target = |input| Target::wire(self.gate_index, input);
|
|
|
|
let mut deps = vec![local_target(self.gate.wire_access_index(self.copy))];
|
|
for i in 0..self.gate.vec_size() {
|
|
deps.push(local_target(self.gate.wire_list_item(i, self.copy)));
|
|
}
|
|
deps
|
|
}
|
|
|
|
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
|
|
let local_wire = |input| Wire {
|
|
gate: self.gate_index,
|
|
input,
|
|
};
|
|
|
|
let get_local_wire = |input| witness.get_wire(local_wire(input));
|
|
let mut set_local_wire = |input, value| out_buffer.set_wire(local_wire(input), value);
|
|
|
|
let copy = self.copy;
|
|
let vec_size = self.gate.vec_size();
|
|
|
|
let access_index_f = get_local_wire(self.gate.wire_access_index(copy));
|
|
let access_index = access_index_f.to_canonical_u64() as usize;
|
|
debug_assert!(
|
|
access_index < vec_size,
|
|
"Access index {} is larger than the vector size {}",
|
|
access_index,
|
|
vec_size
|
|
);
|
|
|
|
set_local_wire(
|
|
self.gate.wire_claimed_element(copy),
|
|
get_local_wire(self.gate.wire_list_item(access_index, copy)),
|
|
);
|
|
|
|
for i in 0..self.gate.bits {
|
|
let bit = F::from_bool(((access_index >> i) & 1) != 0);
|
|
set_local_wire(self.gate.wire_bit(i, copy), bit);
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use std::marker::PhantomData;
|
|
|
|
use anyhow::Result;
|
|
use rand::{thread_rng, Rng};
|
|
|
|
use crate::field::field_types::Field;
|
|
use crate::field::goldilocks_field::GoldilocksField;
|
|
use crate::gates::gate::Gate;
|
|
use crate::gates::gate_testing::{test_eval_fns, test_low_degree};
|
|
use crate::gates::random_access::RandomAccessGate;
|
|
use crate::hash::hash_types::HashOut;
|
|
use crate::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
|
|
use crate::plonk::vars::EvaluationVars;
|
|
|
|
#[test]
|
|
fn low_degree() {
|
|
test_low_degree::<GoldilocksField, _, 4>(RandomAccessGate::new(4, 4));
|
|
}
|
|
|
|
#[test]
|
|
fn eval_fns() -> Result<()> {
|
|
const D: usize = 2;
|
|
type C = PoseidonGoldilocksConfig;
|
|
type F = <C as GenericConfig<D>>::F;
|
|
test_eval_fns::<F, C, _, D>(RandomAccessGate::new(4, 4))
|
|
}
|
|
|
|
#[test]
|
|
fn test_gate_constraint() {
|
|
const D: usize = 2;
|
|
type C = PoseidonGoldilocksConfig;
|
|
type F = <C as GenericConfig<D>>::F;
|
|
type FF = <C as GenericConfig<D>>::FE;
|
|
|
|
/// Returns the local wires for a random access gate given the vectors, elements to compare,
|
|
/// and indices.
|
|
fn get_wires(
|
|
bits: usize,
|
|
lists: Vec<Vec<F>>,
|
|
access_indices: Vec<usize>,
|
|
claimed_elements: Vec<F>,
|
|
) -> Vec<FF> {
|
|
let num_copies = lists.len();
|
|
let vec_size = lists[0].len();
|
|
|
|
let mut v = Vec::new();
|
|
let mut bit_vals = Vec::new();
|
|
for copy in 0..num_copies {
|
|
let access_index = access_indices[copy];
|
|
v.push(F::from_canonical_usize(access_index));
|
|
v.push(claimed_elements[copy]);
|
|
for j in 0..vec_size {
|
|
v.push(lists[copy][j]);
|
|
}
|
|
|
|
for i in 0..bits {
|
|
bit_vals.push(F::from_bool(((access_index >> i) & 1) != 0));
|
|
}
|
|
}
|
|
v.extend(bit_vals);
|
|
|
|
v.iter().map(|&x| x.into()).collect()
|
|
}
|
|
|
|
let bits = 3;
|
|
let vec_size = 1 << bits;
|
|
let num_copies = 4;
|
|
let lists = (0..num_copies)
|
|
.map(|_| F::rand_vec(vec_size))
|
|
.collect::<Vec<_>>();
|
|
let access_indices = (0..num_copies)
|
|
.map(|_| thread_rng().gen_range(0..vec_size))
|
|
.collect::<Vec<_>>();
|
|
let gate = RandomAccessGate::<F, D> {
|
|
bits,
|
|
num_copies,
|
|
_phantom: PhantomData,
|
|
};
|
|
|
|
let good_claimed_elements = lists
|
|
.iter()
|
|
.zip(&access_indices)
|
|
.map(|(l, &i)| l[i])
|
|
.collect();
|
|
let good_vars = EvaluationVars {
|
|
local_constants: &[],
|
|
local_wires: &get_wires(
|
|
bits,
|
|
lists.clone(),
|
|
access_indices.clone(),
|
|
good_claimed_elements,
|
|
),
|
|
public_inputs_hash: &HashOut::rand(),
|
|
};
|
|
let bad_claimed_elements = F::rand_vec(4);
|
|
let bad_vars = EvaluationVars {
|
|
local_constants: &[],
|
|
local_wires: &get_wires(bits, lists, access_indices, bad_claimed_elements),
|
|
public_inputs_hash: &HashOut::rand(),
|
|
};
|
|
|
|
assert!(
|
|
gate.eval_unfiltered(good_vars).iter().all(|x| x.is_zero()),
|
|
"Gate constraints are not satisfied."
|
|
);
|
|
assert!(
|
|
!gate.eval_unfiltered(bad_vars).iter().all(|x| x.is_zero()),
|
|
"Gate constraints are satisfied but should not be."
|
|
);
|
|
}
|
|
}
|