plonky2/src/gates/gmimc_eval.rs
Daniel Lubarov d3ac365667 Recursive evaluation of GMiMCGate
If we did it all with `ArithmeticGate`s, the main loop (with ~101 iterations of cubing and a couple adds) would be fairly expensive, so this uses a (much smaller) custom gate called `GMiMCEvalGate` which does all the computations for one iteration of that loop.
2021-04-27 13:16:24 -07:00

222 lines
7.6 KiB
Rust

use crate::circuit_builder::CircuitBuilder;
use crate::field::field::Field;
use crate::gates::gate::{Gate, GateRef};
use crate::generator::{SimpleGenerator, WitnessGenerator};
use crate::target::Target;
use crate::vars::{EvaluationTargets, EvaluationVars};
use crate::wire::Wire;
use crate::witness::PartialWitness;
/// Performs some arithmetic involved in the evaluation of GMiMC's constraint polynomials for one
/// round. In particular, this performs the following computations:
///
/// - `constraint := state_a_old + addition_buffer_old + C_r - cubing_input`
/// - `f := cubing_input^3`
/// - `addition_buffer_new := addition_buffer_old + f`
/// - `state_a_new := state_a_old - f`
///
/// Here `state_a_{old,new}` represent the old and new states of the `a`th element of the GMiMC
/// permutation. `addition_buffer_{old,new}` represents a value that is implicitly added to each
/// element; see https://affine.group/2020/02/starkware-challenge. `C_r` represents the round
/// constant for round `r`.
#[derive(Debug)]
pub struct GMiMCEvalGate;
impl GMiMCEvalGate {
pub fn get<F: Field>() -> GateRef<F> {
GateRef::new(GMiMCEvalGate)
}
pub const CONST_C_R: usize = 0;
pub const WIRE_CONSTRAINT: usize = 0;
pub const WIRE_STATE_A_OLD: usize = 1;
pub const WIRE_STATE_A_NEW: usize = 2;
pub const WIRE_ADDITION_BUFFER_OLD: usize = 3;
pub const WIRE_ADDITION_BUFFER_NEW: usize = 4;
pub const WIRE_CUBING_INPUT: usize = 5;
const WIRE_F: usize = 6;
}
impl<F: Field> Gate<F> for GMiMCEvalGate {
fn id(&self) -> String {
format!("{:?}", self)
}
fn eval_unfiltered(&self, vars: EvaluationVars<F>) -> Vec<F> {
let c_r = vars.local_constants[Self::CONST_C_R];
let constraint = vars.local_wires[Self::WIRE_CONSTRAINT];
let state_a_old = vars.local_wires[Self::WIRE_STATE_A_OLD];
let state_a_new = vars.local_wires[Self::WIRE_STATE_A_NEW];
let addition_buffer_old = vars.local_wires[Self::WIRE_ADDITION_BUFFER_OLD];
let addition_buffer_new = vars.local_wires[Self::WIRE_ADDITION_BUFFER_NEW];
let cubing_input = vars.local_wires[Self::WIRE_CUBING_INPUT];
let f = vars.local_wires[Self::WIRE_F];
let mut constraints = Vec::with_capacity(self.num_constraints());
// constraint := state_a_old + addition_buffer_old + C_r - cubing_input
let computed_constraint = state_a_old + addition_buffer_old + c_r - cubing_input;
constraints.push(constraint - computed_constraint);
// f := cubing_input^3
let computed_f = cubing_input.cube();
constraints.push(f - computed_f);
// addition_buffer_new := addition_buffer_old + f
let computed_addition_buffer_new = addition_buffer_old + f;
constraints.push(addition_buffer_new - computed_addition_buffer_new);
// state_a_new := state_a_old - f
let computed_state_a_new = state_a_old - f;
constraints.push(state_a_new - computed_state_a_new);
constraints
}
fn eval_unfiltered_recursively(
&self,
builder: &mut CircuitBuilder<F>,
vars: EvaluationTargets,
) -> Vec<Target> {
let c_r = vars.local_constants[Self::CONST_C_R];
let constraint = vars.local_wires[Self::WIRE_CONSTRAINT];
let state_a_old = vars.local_wires[Self::WIRE_STATE_A_OLD];
let state_a_new = vars.local_wires[Self::WIRE_STATE_A_NEW];
let addition_buffer_old = vars.local_wires[Self::WIRE_ADDITION_BUFFER_OLD];
let addition_buffer_new = vars.local_wires[Self::WIRE_ADDITION_BUFFER_NEW];
let cubing_input = vars.local_wires[Self::WIRE_CUBING_INPUT];
let f = vars.local_wires[Self::WIRE_F];
let mut constraints = Vec::with_capacity(self.num_constraints());
// constraint := state_a_old + addition_buffer_old + C_r - cubing_input
let sum = builder.add_many(&[state_a_old, addition_buffer_old, c_r]);
let computed_constraint = builder.sub(sum, cubing_input);
constraints.push(builder.sub(constraint, computed_constraint));
// f := cubing_input^3
let computed_f = builder.cube(cubing_input);
constraints.push(builder.sub(f, computed_f));
// addition_buffer_new := addition_buffer_old + f
let computed_addition_buffer_new = builder.add(addition_buffer_old, f);
constraints.push(builder.sub(addition_buffer_new, computed_addition_buffer_new));
// state_a_new := state_a_old - f
let computed_state_a_new = builder.sub(state_a_old, f);
constraints.push(builder.sub(state_a_new, computed_state_a_new));
constraints
}
fn generators(
&self,
gate_index: usize,
local_constants: &[F],
) -> Vec<Box<dyn WitnessGenerator<F>>> {
let gen = GMiMCEvalGenerator::<F> {
gate_index,
c_r: local_constants[Self::CONST_C_R],
};
vec![Box::new(gen)]
}
fn num_wires(&self) -> usize {
7
}
fn num_constants(&self) -> usize {
1
}
fn degree(&self) -> usize {
3
}
fn num_constraints(&self) -> usize {
4
}
}
#[derive(Debug)]
struct GMiMCEvalGenerator<F: Field> {
gate_index: usize,
c_r: F,
}
impl<F: Field> SimpleGenerator<F> for GMiMCEvalGenerator<F> {
fn dependencies(&self) -> Vec<Target> {
let gate = self.gate_index;
vec![
Target::Wire(Wire {
gate,
input: GMiMCEvalGate::WIRE_CUBING_INPUT,
}),
Target::Wire(Wire {
gate,
input: GMiMCEvalGate::WIRE_ADDITION_BUFFER_OLD,
}),
Target::Wire(Wire {
gate,
input: GMiMCEvalGate::WIRE_STATE_A_OLD,
}),
]
}
fn run_once(&self, witness: &PartialWitness<F>) -> PartialWitness<F> {
let gate = self.gate_index;
let wire_constraint = Wire {
gate,
input: GMiMCEvalGate::WIRE_CONSTRAINT,
};
let wire_state_a_old = Wire {
gate,
input: GMiMCEvalGate::WIRE_STATE_A_OLD,
};
let wire_state_a_new = Wire {
gate,
input: GMiMCEvalGate::WIRE_STATE_A_NEW,
};
let wire_addition_buffer_old = Wire {
gate,
input: GMiMCEvalGate::WIRE_ADDITION_BUFFER_OLD,
};
let wire_addition_buffer_new = Wire {
gate,
input: GMiMCEvalGate::WIRE_ADDITION_BUFFER_NEW,
};
let wire_cubing_input = Wire {
gate,
input: GMiMCEvalGate::WIRE_CUBING_INPUT,
};
let wire_f = Wire {
gate,
input: GMiMCEvalGate::WIRE_F,
};
let addition_buffer_old = witness.get_wire(wire_addition_buffer_old);
let state_a_old = witness.get_wire(wire_state_a_old);
let cubing_input = witness.get_wire(wire_cubing_input);
// constraint := state_a_old + addition_buffer_old + C_r - cubing_input
let constraint = state_a_old + addition_buffer_old + self.c_r - cubing_input;
// f := cubing_input^3
let f = cubing_input.cube();
// addition_buffer_new := addition_buffer_old + f
let addition_buffer_new = addition_buffer_old + f;
// state_a_new := state_a_old - f
let state_a_new = state_a_old - f;
let mut witness = PartialWitness::new();
witness.set_wire(wire_constraint, constraint);
witness.set_wire(wire_f, f);
witness.set_wire(wire_state_a_new, addition_buffer_new);
witness.set_wire(wire_addition_buffer_new, state_a_new);
witness
}
}