plonky2/src/hash/merkle_proofs.rs
2021-08-10 13:33:44 +02:00

215 lines
6.8 KiB
Rust

use std::convert::TryInto;
use anyhow::{ensure, Result};
use serde::{Deserialize, Serialize};
use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::Extendable;
use crate::field::field_types::Field;
use crate::gates::gmimc::GMiMCGate;
use crate::hash::hash_types::{HashOut, HashOutTarget, MerkleCapTarget};
use crate::hash::hashing::{compress, hash_or_noop, GMIMC_ROUNDS};
use crate::hash::merkle_tree::MerkleCap;
use crate::iop::target::Target;
use crate::iop::wire::Wire;
use crate::plonk::circuit_builder::CircuitBuilder;
#[derive(Clone, Debug, Serialize, Deserialize)]
#[serde(bound = "")]
pub struct MerkleProof<F: Field> {
/// The Merkle digest of each sibling subtree, staying from the bottommost layer.
pub siblings: Vec<HashOut<F>>,
}
#[derive(Clone)]
pub struct MerkleProofTarget {
/// The Merkle digest of each sibling subtree, staying from the bottommost layer.
pub siblings: Vec<HashOutTarget>,
}
/// Verifies that the given leaf data is present at the given index in the Merkle tree with the
/// given root.
pub(crate) fn verify_merkle_proof<F: Field>(
leaf_data: Vec<F>,
leaf_index: usize,
merkle_cap: &MerkleCap<F>,
proof: &MerkleProof<F>,
reverse_bits: bool,
) -> Result<()> {
let mut index = if reverse_bits {
crate::util::reverse_bits(leaf_index, proof.siblings.len())
} else {
leaf_index
};
let mut current_digest = hash_or_noop(leaf_data);
for &sibling_digest in proof.siblings.iter() {
let bit = index & 1;
index >>= 1;
current_digest = if bit == 1 {
compress(sibling_digest, current_digest)
} else {
compress(current_digest, sibling_digest)
}
}
ensure!(
current_digest == merkle_cap.0[index],
"Invalid Merkle proof."
);
Ok(())
}
impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Verifies that the given leaf data is present at the given index in the Merkle tree with the
/// given root. The index is given by it's little-endian bits.
pub(crate) fn verify_merkle_proof(
&mut self,
leaf_data: Vec<Target>,
leaf_index_bits: &[Target],
merkle_root: &MerkleCapTarget,
proof: &MerkleProofTarget,
) {
let zero = self.zero();
let mut state: HashOutTarget = self.hash_or_noop(leaf_data);
for (&bit, &sibling) in leaf_index_bits.iter().zip(&proof.siblings) {
let gate_type = GMiMCGate::<F, D, GMIMC_ROUNDS>::new_automatic_constants();
let gate = self.add_gate(gate_type, vec![]);
let swap_wire = GMiMCGate::<F, D, GMIMC_ROUNDS>::WIRE_SWAP;
let swap_wire = Target::Wire(Wire {
gate,
input: swap_wire,
});
self.generate_copy(bit, swap_wire);
let input_wires = (0..12)
.map(|i| {
Target::Wire(Wire {
gate,
input: GMiMCGate::<F, D, GMIMC_ROUNDS>::wire_input(i),
})
})
.collect::<Vec<_>>();
for i in 0..4 {
self.route(state.elements[i], input_wires[i]);
self.route(sibling.elements[i], input_wires[4 + i]);
self.route(zero, input_wires[8 + i]);
}
state = HashOutTarget::from_vec(
(0..4)
.map(|i| {
Target::Wire(Wire {
gate,
input: GMiMCGate::<F, D, GMIMC_ROUNDS>::wire_output(i),
})
})
.collect(),
)
}
let index = self.le_sum(leaf_index_bits[proof.siblings.len()..].to_vec().into_iter());
let mut state_ext = [zero; D];
for i in 0..D {
state_ext[i] = state.elements[i];
}
let state_ext = ExtensionTarget(state_ext);
let cap_ext = merkle_root
.0
.iter()
.map(|h| {
let mut tmp = [zero; D];
for i in 0..D {
tmp[i] = h.elements[i];
}
ExtensionTarget(tmp)
})
.collect();
self.random_access(index, state_ext, cap_ext);
// self.named_assert_hashes_equal(state, merkle_root, "check Merkle root".into())
}
pub(crate) fn assert_hashes_equal(&mut self, x: HashOutTarget, y: HashOutTarget) {
for i in 0..4 {
self.assert_equal(x.elements[i], y.elements[i]);
}
}
pub(crate) fn named_assert_hashes_equal(
&mut self,
x: HashOutTarget,
y: HashOutTarget,
name: String,
) {
for i in 0..4 {
self.named_assert_equal(
x.elements[i],
y.elements[i],
format!("{}: {}-th hash element", name, i),
);
}
}
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use rand::{thread_rng, Rng};
use super::*;
use crate::field::crandall_field::CrandallField;
use crate::hash::merkle_tree::MerkleTree;
use crate::iop::witness::PartialWitness;
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::circuit_data::CircuitConfig;
use crate::plonk::verifier::verify;
fn random_data<F: Field>(n: usize, k: usize) -> Vec<Vec<F>> {
(0..n).map(|_| F::rand_vec(k)).collect()
}
#[test]
fn test_recursive_merkle_proof() -> Result<()> {
type F = CrandallField;
let config = CircuitConfig::large_config();
let mut pw = PartialWitness::new(config.num_wires);
let mut builder = CircuitBuilder::<F, 4>::new(config);
let log_n = 8;
let n = 1 << log_n;
let cap_height = 1;
let leaves = random_data::<F>(n, 7);
let tree = MerkleTree::new(leaves, cap_height, false);
let i: usize = thread_rng().gen_range(0..n);
let proof = tree.prove(i);
let proof_t = MerkleProofTarget {
siblings: builder.add_virtual_hashes(proof.siblings.len()),
};
for i in 0..proof.siblings.len() {
pw.set_hash_target(proof_t.siblings[i], proof.siblings[i]);
}
let root_t = builder.add_virtual_cap(cap_height);
pw.set_cap_target(&root_t, &tree.root);
let i_c = builder.constant(F::from_canonical_usize(i));
let i_bits = builder.split_le(i_c, log_n);
let data = builder.add_virtual_targets(tree.leaves[i].len());
for j in 0..data.len() {
pw.set_target(data[j], tree.leaves[i][j]);
}
builder.verify_merkle_proof(data, &i_bits, &root_t, &proof_t);
let data = builder.build();
let proof = data.prove(pw)?;
verify(proof, &data.verifier_only, &data.common)
}
}