mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-09 01:03:08 +00:00
406 lines
14 KiB
Rust
406 lines
14 KiB
Rust
use anyhow::Result;
|
|
use log::Level;
|
|
use rayon::prelude::*;
|
|
|
|
use crate::field::extension_field::Extendable;
|
|
use crate::fri::commitment::PolynomialBatchCommitment;
|
|
use crate::hash::hash_types::HashOut;
|
|
use crate::hash::hashing::hash_n_to_hash;
|
|
use crate::iop::challenger::Challenger;
|
|
use crate::iop::generator::generate_partial_witness;
|
|
use crate::iop::witness::{MatrixWitness, PartialWitness, Witness};
|
|
use crate::plonk::circuit_data::{CommonCircuitData, ProverOnlyCircuitData};
|
|
use crate::plonk::plonk_common::PlonkPolynomials;
|
|
use crate::plonk::plonk_common::ZeroPolyOnCoset;
|
|
use crate::plonk::proof::{Proof, ProofWithPublicInputs};
|
|
use crate::plonk::vanishing_poly::eval_vanishing_poly_base;
|
|
use crate::plonk::vars::EvaluationVarsBase;
|
|
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
|
|
use crate::timed;
|
|
use crate::util::partial_products::partial_products;
|
|
use crate::util::timing::TimingTree;
|
|
use crate::util::{log2_ceil, transpose};
|
|
|
|
pub(crate) fn prove<F: Extendable<D>, const D: usize>(
|
|
prover_data: &ProverOnlyCircuitData<F, D>,
|
|
common_data: &CommonCircuitData<F, D>,
|
|
inputs: PartialWitness<F>,
|
|
) -> Result<ProofWithPublicInputs<F, D>> {
|
|
let mut timing = TimingTree::new("prove", Level::Debug);
|
|
let config = &common_data.config;
|
|
let num_challenges = config.num_challenges;
|
|
let quotient_degree = common_data.quotient_degree();
|
|
let degree = common_data.degree();
|
|
|
|
let mut partition_witness = prover_data.partition_witness.clone();
|
|
timed!(
|
|
timing,
|
|
"fill partition witness",
|
|
for (t, v) in inputs.target_values.into_iter() {
|
|
partition_witness.set_target(t, v);
|
|
}
|
|
);
|
|
|
|
timed!(
|
|
timing,
|
|
&format!("run {} generators", prover_data.generators.len()),
|
|
generate_partial_witness(&mut partition_witness, &prover_data.generators, &mut timing)
|
|
);
|
|
|
|
let public_inputs = partition_witness.get_targets(&prover_data.public_inputs);
|
|
let public_inputs_hash = hash_n_to_hash(public_inputs.clone(), true);
|
|
|
|
if cfg!(debug_assertions) {
|
|
// Display the marked targets for debugging purposes.
|
|
for m in &prover_data.marked_targets {
|
|
m.display(&partition_witness);
|
|
}
|
|
}
|
|
|
|
let witness = timed!(
|
|
timing,
|
|
"compute full witness",
|
|
partition_witness.full_witness()
|
|
);
|
|
|
|
let wires_values: Vec<PolynomialValues<F>> = timed!(
|
|
timing,
|
|
"compute wire polynomials",
|
|
witness
|
|
.wire_values
|
|
.par_iter()
|
|
.map(|column| PolynomialValues::new(column.clone()))
|
|
.collect()
|
|
);
|
|
|
|
let wires_commitment = timed!(
|
|
timing,
|
|
"compute wires commitment",
|
|
PolynomialBatchCommitment::from_values(
|
|
wires_values,
|
|
config.rate_bits,
|
|
config.zero_knowledge & PlonkPolynomials::WIRES.blinding,
|
|
config.cap_height,
|
|
&mut timing,
|
|
)
|
|
);
|
|
|
|
let mut challenger = Challenger::new();
|
|
|
|
// Observe the instance.
|
|
challenger.observe_hash(&common_data.circuit_digest);
|
|
challenger.observe_hash(&public_inputs_hash);
|
|
|
|
challenger.observe_cap(&wires_commitment.merkle_tree.cap);
|
|
let betas = challenger.get_n_challenges(num_challenges);
|
|
let gammas = challenger.get_n_challenges(num_challenges);
|
|
|
|
assert!(
|
|
common_data.quotient_degree_factor < common_data.config.num_routed_wires,
|
|
"When the number of routed wires is smaller that the degree, we should change the logic to avoid computing partial products."
|
|
);
|
|
let mut partial_products = timed!(
|
|
timing,
|
|
"compute partial products",
|
|
all_wires_permutation_partial_products(&witness, &betas, &gammas, prover_data, common_data)
|
|
);
|
|
|
|
let plonk_z_vecs = timed!(
|
|
timing,
|
|
"compute Z's",
|
|
compute_zs(&partial_products, common_data)
|
|
);
|
|
|
|
// The first polynomial in `partial_products` represent the final product used in the
|
|
// computation of `Z`. It isn't needed anymore so we discard it.
|
|
partial_products.iter_mut().for_each(|part| {
|
|
part.remove(0);
|
|
});
|
|
|
|
let zs_partial_products = [plonk_z_vecs, partial_products.concat()].concat();
|
|
let zs_partial_products_commitment = timed!(
|
|
timing,
|
|
"commit to Z's",
|
|
PolynomialBatchCommitment::from_values(
|
|
zs_partial_products,
|
|
config.rate_bits,
|
|
config.zero_knowledge & PlonkPolynomials::ZS_PARTIAL_PRODUCTS.blinding,
|
|
config.cap_height,
|
|
&mut timing,
|
|
)
|
|
);
|
|
|
|
challenger.observe_cap(&zs_partial_products_commitment.merkle_tree.cap);
|
|
|
|
let alphas = challenger.get_n_challenges(num_challenges);
|
|
|
|
let quotient_polys = timed!(
|
|
timing,
|
|
"compute quotient polys",
|
|
compute_quotient_polys(
|
|
common_data,
|
|
prover_data,
|
|
&public_inputs_hash,
|
|
&wires_commitment,
|
|
&zs_partial_products_commitment,
|
|
&betas,
|
|
&gammas,
|
|
&alphas,
|
|
)
|
|
);
|
|
|
|
// Compute the quotient polynomials, aka `t` in the Plonk paper.
|
|
let all_quotient_poly_chunks = timed!(
|
|
timing,
|
|
"split up quotient polys",
|
|
quotient_polys
|
|
.into_par_iter()
|
|
.flat_map(|mut quotient_poly| {
|
|
quotient_poly.trim();
|
|
// TODO: Return Result instead of panicking.
|
|
quotient_poly.pad(quotient_degree).expect(
|
|
"Quotient has failed, the vanishing polynomial is not divisible by `Z_H",
|
|
);
|
|
// Split t into degree-n chunks.
|
|
quotient_poly.chunks(degree)
|
|
})
|
|
.collect()
|
|
);
|
|
|
|
let quotient_polys_commitment = timed!(
|
|
timing,
|
|
"commit to quotient polys",
|
|
PolynomialBatchCommitment::from_coeffs(
|
|
all_quotient_poly_chunks,
|
|
config.rate_bits,
|
|
config.zero_knowledge & PlonkPolynomials::QUOTIENT.blinding,
|
|
config.cap_height,
|
|
&mut timing
|
|
)
|
|
);
|
|
|
|
challenger.observe_cap("ient_polys_commitment.merkle_tree.cap);
|
|
|
|
let zeta = challenger.get_extension_challenge();
|
|
|
|
let (opening_proof, openings) = timed!(
|
|
timing,
|
|
"compute opening proofs",
|
|
PolynomialBatchCommitment::open_plonk(
|
|
&[
|
|
&prover_data.constants_sigmas_commitment,
|
|
&wires_commitment,
|
|
&zs_partial_products_commitment,
|
|
"ient_polys_commitment,
|
|
],
|
|
zeta,
|
|
&mut challenger,
|
|
common_data,
|
|
&mut timing,
|
|
)
|
|
);
|
|
|
|
timing.print();
|
|
|
|
let proof = Proof {
|
|
wires_cap: wires_commitment.merkle_tree.cap,
|
|
plonk_zs_partial_products_cap: zs_partial_products_commitment.merkle_tree.cap,
|
|
quotient_polys_cap: quotient_polys_commitment.merkle_tree.cap,
|
|
openings,
|
|
opening_proof,
|
|
};
|
|
Ok(ProofWithPublicInputs {
|
|
proof,
|
|
public_inputs,
|
|
})
|
|
}
|
|
|
|
/// Compute the partial products used in the `Z` polynomials.
|
|
fn all_wires_permutation_partial_products<F: Extendable<D>, const D: usize>(
|
|
witness: &MatrixWitness<F>,
|
|
betas: &[F],
|
|
gammas: &[F],
|
|
prover_data: &ProverOnlyCircuitData<F, D>,
|
|
common_data: &CommonCircuitData<F, D>,
|
|
) -> Vec<Vec<PolynomialValues<F>>> {
|
|
(0..common_data.config.num_challenges)
|
|
.map(|i| {
|
|
wires_permutation_partial_products(
|
|
witness,
|
|
betas[i],
|
|
gammas[i],
|
|
prover_data,
|
|
common_data,
|
|
)
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
/// Compute the partial products used in the `Z` polynomial.
|
|
/// Returns the polynomials interpolating `partial_products(f / g)`
|
|
/// where `f, g` are the products in the definition of `Z`: `Z(g^i) = f / g`.
|
|
fn wires_permutation_partial_products<F: Extendable<D>, const D: usize>(
|
|
witness: &MatrixWitness<F>,
|
|
beta: F,
|
|
gamma: F,
|
|
prover_data: &ProverOnlyCircuitData<F, D>,
|
|
common_data: &CommonCircuitData<F, D>,
|
|
) -> Vec<PolynomialValues<F>> {
|
|
let degree = common_data.quotient_degree_factor;
|
|
let subgroup = &prover_data.subgroup;
|
|
let k_is = &common_data.k_is;
|
|
let values = subgroup
|
|
.par_iter()
|
|
.enumerate()
|
|
.map(|(i, &x)| {
|
|
let s_sigmas = &prover_data.sigmas[i];
|
|
let numerators = (0..common_data.config.num_routed_wires).map(|j| {
|
|
let wire_value = witness.get_wire(i, j);
|
|
let k_i = k_is[j];
|
|
let s_id = k_i * x;
|
|
wire_value + beta * s_id + gamma
|
|
});
|
|
let denominators = (0..common_data.config.num_routed_wires)
|
|
.map(|j| {
|
|
let wire_value = witness.get_wire(i, j);
|
|
let s_sigma = s_sigmas[j];
|
|
wire_value + beta * s_sigma + gamma
|
|
})
|
|
.collect::<Vec<_>>();
|
|
let denominator_invs = F::batch_multiplicative_inverse(&denominators);
|
|
let quotient_values = numerators
|
|
.zip(denominator_invs)
|
|
.map(|(num, den_inv)| num * den_inv)
|
|
.collect::<Vec<_>>();
|
|
|
|
let quotient_partials = partial_products("ient_values, degree);
|
|
|
|
// This is the final product for the quotient.
|
|
let quotient = quotient_partials
|
|
[common_data.num_partial_products.0 - common_data.num_partial_products.1..]
|
|
.iter()
|
|
.copied()
|
|
.product();
|
|
|
|
// We add the quotient at the beginning of the vector to reuse them later in the computation of `Z`.
|
|
[vec![quotient], quotient_partials].concat()
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
transpose(&values)
|
|
.into_par_iter()
|
|
.map(PolynomialValues::new)
|
|
.collect()
|
|
}
|
|
|
|
fn compute_zs<F: Extendable<D>, const D: usize>(
|
|
partial_products: &[Vec<PolynomialValues<F>>],
|
|
common_data: &CommonCircuitData<F, D>,
|
|
) -> Vec<PolynomialValues<F>> {
|
|
(0..common_data.config.num_challenges)
|
|
.map(|i| compute_z(&partial_products[i], common_data))
|
|
.collect()
|
|
}
|
|
|
|
/// Compute the `Z` polynomial by reusing the computations done in `wires_permutation_partial_products`.
|
|
fn compute_z<F: Extendable<D>, const D: usize>(
|
|
partial_products: &[PolynomialValues<F>],
|
|
common_data: &CommonCircuitData<F, D>,
|
|
) -> PolynomialValues<F> {
|
|
let mut plonk_z_points = vec![F::ONE];
|
|
for i in 1..common_data.degree() {
|
|
let quotient = partial_products[0].values[i - 1];
|
|
let last = *plonk_z_points.last().unwrap();
|
|
plonk_z_points.push(last * quotient);
|
|
}
|
|
plonk_z_points.into()
|
|
}
|
|
|
|
fn compute_quotient_polys<'a, F: Extendable<D>, const D: usize>(
|
|
common_data: &CommonCircuitData<F, D>,
|
|
prover_data: &'a ProverOnlyCircuitData<F, D>,
|
|
public_inputs_hash: &HashOut<F>,
|
|
wires_commitment: &'a PolynomialBatchCommitment<F>,
|
|
zs_partial_products_commitment: &'a PolynomialBatchCommitment<F>,
|
|
betas: &[F],
|
|
gammas: &[F],
|
|
alphas: &[F],
|
|
) -> Vec<PolynomialCoeffs<F>> {
|
|
let num_challenges = common_data.config.num_challenges;
|
|
let max_degree_bits = log2_ceil(common_data.quotient_degree_factor);
|
|
assert!(
|
|
max_degree_bits <= common_data.config.rate_bits,
|
|
"Having constraints of degree higher than the rate is not supported yet. \
|
|
If we need this in the future, we can precompute the larger LDE before computing the `ListPolynomialCommitment`s."
|
|
);
|
|
|
|
// We reuse the LDE computed in `ListPolynomialCommitment` and extract every `step` points to get
|
|
// an LDE matching `max_filtered_constraint_degree`.
|
|
let step = 1 << (common_data.config.rate_bits - max_degree_bits);
|
|
// When opening the `Z`s polys at the "next" point in Plonk, need to look at the point `next_step`
|
|
// steps away since we work on an LDE of degree `max_filtered_constraint_degree`.
|
|
let next_step = 1 << max_degree_bits;
|
|
|
|
let points = F::two_adic_subgroup(common_data.degree_bits + max_degree_bits);
|
|
let lde_size = points.len();
|
|
|
|
// Retrieve the LDE values at index `i`.
|
|
let get_at_index = |comm: &'a PolynomialBatchCommitment<F>, i: usize| -> &'a [F] {
|
|
comm.get_lde_values(i * step)
|
|
};
|
|
|
|
let z_h_on_coset = ZeroPolyOnCoset::new(common_data.degree_bits, max_degree_bits);
|
|
|
|
let quotient_values: Vec<Vec<F>> = points
|
|
.into_par_iter()
|
|
.enumerate()
|
|
.map(|(i, x)| {
|
|
let shifted_x = F::coset_shift() * x;
|
|
let i_next = (i + next_step) % lde_size;
|
|
let local_constants_sigmas = get_at_index(&prover_data.constants_sigmas_commitment, i);
|
|
let local_constants = &local_constants_sigmas[common_data.constants_range()];
|
|
let s_sigmas = &local_constants_sigmas[common_data.sigmas_range()];
|
|
let local_wires = get_at_index(wires_commitment, i);
|
|
let local_zs_partial_products = get_at_index(zs_partial_products_commitment, i);
|
|
let local_zs = &local_zs_partial_products[common_data.zs_range()];
|
|
let next_zs =
|
|
&get_at_index(zs_partial_products_commitment, i_next)[common_data.zs_range()];
|
|
let partial_products = &local_zs_partial_products[common_data.partial_products_range()];
|
|
|
|
debug_assert_eq!(local_wires.len(), common_data.config.num_wires);
|
|
debug_assert_eq!(local_zs.len(), num_challenges);
|
|
|
|
let vars = EvaluationVarsBase {
|
|
local_constants,
|
|
local_wires,
|
|
public_inputs_hash,
|
|
};
|
|
let mut quotient_values = eval_vanishing_poly_base(
|
|
common_data,
|
|
i,
|
|
shifted_x,
|
|
vars,
|
|
local_zs,
|
|
next_zs,
|
|
partial_products,
|
|
s_sigmas,
|
|
betas,
|
|
gammas,
|
|
alphas,
|
|
&z_h_on_coset,
|
|
);
|
|
let denominator_inv = z_h_on_coset.eval_inverse(i);
|
|
quotient_values
|
|
.iter_mut()
|
|
.for_each(|v| *v *= denominator_inv);
|
|
quotient_values
|
|
})
|
|
.collect();
|
|
|
|
transpose("ient_values)
|
|
.into_par_iter()
|
|
.map(PolynomialValues::new)
|
|
.map(|values| values.coset_ifft(F::coset_shift()))
|
|
.collect()
|
|
}
|