plonky2/src/plonk/prover.rs
2021-08-20 13:06:07 +02:00

406 lines
14 KiB
Rust

use anyhow::Result;
use log::Level;
use rayon::prelude::*;
use crate::field::extension_field::Extendable;
use crate::fri::commitment::PolynomialBatchCommitment;
use crate::hash::hash_types::HashOut;
use crate::hash::hashing::hash_n_to_hash;
use crate::iop::challenger::Challenger;
use crate::iop::generator::generate_partial_witness;
use crate::iop::witness::{MatrixWitness, PartialWitness, Witness};
use crate::plonk::circuit_data::{CommonCircuitData, ProverOnlyCircuitData};
use crate::plonk::plonk_common::PlonkPolynomials;
use crate::plonk::plonk_common::ZeroPolyOnCoset;
use crate::plonk::proof::{Proof, ProofWithPublicInputs};
use crate::plonk::vanishing_poly::eval_vanishing_poly_base;
use crate::plonk::vars::EvaluationVarsBase;
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
use crate::timed;
use crate::util::partial_products::partial_products;
use crate::util::timing::TimingTree;
use crate::util::{log2_ceil, transpose};
pub(crate) fn prove<F: Extendable<D>, const D: usize>(
prover_data: &ProverOnlyCircuitData<F, D>,
common_data: &CommonCircuitData<F, D>,
inputs: PartialWitness<F>,
) -> Result<ProofWithPublicInputs<F, D>> {
let mut timing = TimingTree::new("prove", Level::Debug);
let config = &common_data.config;
let num_challenges = config.num_challenges;
let quotient_degree = common_data.quotient_degree();
let degree = common_data.degree();
let mut partition_witness = prover_data.partition_witness.clone();
timed!(
timing,
"fill partition witness",
for (t, v) in inputs.target_values.into_iter() {
partition_witness.set_target(t, v);
}
);
timed!(
timing,
&format!("run {} generators", prover_data.generators.len()),
generate_partial_witness(&mut partition_witness, &prover_data.generators, &mut timing)
);
let public_inputs = partition_witness.get_targets(&prover_data.public_inputs);
let public_inputs_hash = hash_n_to_hash(public_inputs.clone(), true);
if cfg!(debug_assertions) {
// Display the marked targets for debugging purposes.
for m in &prover_data.marked_targets {
m.display(&partition_witness);
}
}
let witness = timed!(
timing,
"compute full witness",
partition_witness.full_witness()
);
let wires_values: Vec<PolynomialValues<F>> = timed!(
timing,
"compute wire polynomials",
witness
.wire_values
.par_iter()
.map(|column| PolynomialValues::new(column.clone()))
.collect()
);
let wires_commitment = timed!(
timing,
"compute wires commitment",
PolynomialBatchCommitment::from_values(
wires_values,
config.rate_bits,
config.zero_knowledge & PlonkPolynomials::WIRES.blinding,
config.cap_height,
&mut timing,
)
);
let mut challenger = Challenger::new();
// Observe the instance.
challenger.observe_hash(&common_data.circuit_digest);
challenger.observe_hash(&public_inputs_hash);
challenger.observe_cap(&wires_commitment.merkle_tree.cap);
let betas = challenger.get_n_challenges(num_challenges);
let gammas = challenger.get_n_challenges(num_challenges);
assert!(
common_data.quotient_degree_factor < common_data.config.num_routed_wires,
"When the number of routed wires is smaller that the degree, we should change the logic to avoid computing partial products."
);
let mut partial_products = timed!(
timing,
"compute partial products",
all_wires_permutation_partial_products(&witness, &betas, &gammas, prover_data, common_data)
);
let plonk_z_vecs = timed!(
timing,
"compute Z's",
compute_zs(&partial_products, common_data)
);
// The first polynomial in `partial_products` represent the final product used in the
// computation of `Z`. It isn't needed anymore so we discard it.
partial_products.iter_mut().for_each(|part| {
part.remove(0);
});
let zs_partial_products = [plonk_z_vecs, partial_products.concat()].concat();
let zs_partial_products_commitment = timed!(
timing,
"commit to Z's",
PolynomialBatchCommitment::from_values(
zs_partial_products,
config.rate_bits,
config.zero_knowledge & PlonkPolynomials::ZS_PARTIAL_PRODUCTS.blinding,
config.cap_height,
&mut timing,
)
);
challenger.observe_cap(&zs_partial_products_commitment.merkle_tree.cap);
let alphas = challenger.get_n_challenges(num_challenges);
let quotient_polys = timed!(
timing,
"compute quotient polys",
compute_quotient_polys(
common_data,
prover_data,
&public_inputs_hash,
&wires_commitment,
&zs_partial_products_commitment,
&betas,
&gammas,
&alphas,
)
);
// Compute the quotient polynomials, aka `t` in the Plonk paper.
let all_quotient_poly_chunks = timed!(
timing,
"split up quotient polys",
quotient_polys
.into_par_iter()
.flat_map(|mut quotient_poly| {
quotient_poly.trim();
// TODO: Return Result instead of panicking.
quotient_poly.pad(quotient_degree).expect(
"Quotient has failed, the vanishing polynomial is not divisible by `Z_H",
);
// Split t into degree-n chunks.
quotient_poly.chunks(degree)
})
.collect()
);
let quotient_polys_commitment = timed!(
timing,
"commit to quotient polys",
PolynomialBatchCommitment::from_coeffs(
all_quotient_poly_chunks,
config.rate_bits,
config.zero_knowledge & PlonkPolynomials::QUOTIENT.blinding,
config.cap_height,
&mut timing
)
);
challenger.observe_cap(&quotient_polys_commitment.merkle_tree.cap);
let zeta = challenger.get_extension_challenge();
let (opening_proof, openings) = timed!(
timing,
"compute opening proofs",
PolynomialBatchCommitment::open_plonk(
&[
&prover_data.constants_sigmas_commitment,
&wires_commitment,
&zs_partial_products_commitment,
&quotient_polys_commitment,
],
zeta,
&mut challenger,
common_data,
&mut timing,
)
);
timing.print();
let proof = Proof {
wires_cap: wires_commitment.merkle_tree.cap,
plonk_zs_partial_products_cap: zs_partial_products_commitment.merkle_tree.cap,
quotient_polys_cap: quotient_polys_commitment.merkle_tree.cap,
openings,
opening_proof,
};
Ok(ProofWithPublicInputs {
proof,
public_inputs,
})
}
/// Compute the partial products used in the `Z` polynomials.
fn all_wires_permutation_partial_products<F: Extendable<D>, const D: usize>(
witness: &MatrixWitness<F>,
betas: &[F],
gammas: &[F],
prover_data: &ProverOnlyCircuitData<F, D>,
common_data: &CommonCircuitData<F, D>,
) -> Vec<Vec<PolynomialValues<F>>> {
(0..common_data.config.num_challenges)
.map(|i| {
wires_permutation_partial_products(
witness,
betas[i],
gammas[i],
prover_data,
common_data,
)
})
.collect()
}
/// Compute the partial products used in the `Z` polynomial.
/// Returns the polynomials interpolating `partial_products(f / g)`
/// where `f, g` are the products in the definition of `Z`: `Z(g^i) = f / g`.
fn wires_permutation_partial_products<F: Extendable<D>, const D: usize>(
witness: &MatrixWitness<F>,
beta: F,
gamma: F,
prover_data: &ProverOnlyCircuitData<F, D>,
common_data: &CommonCircuitData<F, D>,
) -> Vec<PolynomialValues<F>> {
let degree = common_data.quotient_degree_factor;
let subgroup = &prover_data.subgroup;
let k_is = &common_data.k_is;
let values = subgroup
.par_iter()
.enumerate()
.map(|(i, &x)| {
let s_sigmas = &prover_data.sigmas[i];
let numerators = (0..common_data.config.num_routed_wires).map(|j| {
let wire_value = witness.get_wire(i, j);
let k_i = k_is[j];
let s_id = k_i * x;
wire_value + beta * s_id + gamma
});
let denominators = (0..common_data.config.num_routed_wires)
.map(|j| {
let wire_value = witness.get_wire(i, j);
let s_sigma = s_sigmas[j];
wire_value + beta * s_sigma + gamma
})
.collect::<Vec<_>>();
let denominator_invs = F::batch_multiplicative_inverse(&denominators);
let quotient_values = numerators
.zip(denominator_invs)
.map(|(num, den_inv)| num * den_inv)
.collect::<Vec<_>>();
let quotient_partials = partial_products(&quotient_values, degree);
// This is the final product for the quotient.
let quotient = quotient_partials
[common_data.num_partial_products.0 - common_data.num_partial_products.1..]
.iter()
.copied()
.product();
// We add the quotient at the beginning of the vector to reuse them later in the computation of `Z`.
[vec![quotient], quotient_partials].concat()
})
.collect::<Vec<_>>();
transpose(&values)
.into_par_iter()
.map(PolynomialValues::new)
.collect()
}
fn compute_zs<F: Extendable<D>, const D: usize>(
partial_products: &[Vec<PolynomialValues<F>>],
common_data: &CommonCircuitData<F, D>,
) -> Vec<PolynomialValues<F>> {
(0..common_data.config.num_challenges)
.map(|i| compute_z(&partial_products[i], common_data))
.collect()
}
/// Compute the `Z` polynomial by reusing the computations done in `wires_permutation_partial_products`.
fn compute_z<F: Extendable<D>, const D: usize>(
partial_products: &[PolynomialValues<F>],
common_data: &CommonCircuitData<F, D>,
) -> PolynomialValues<F> {
let mut plonk_z_points = vec![F::ONE];
for i in 1..common_data.degree() {
let quotient = partial_products[0].values[i - 1];
let last = *plonk_z_points.last().unwrap();
plonk_z_points.push(last * quotient);
}
plonk_z_points.into()
}
fn compute_quotient_polys<'a, F: Extendable<D>, const D: usize>(
common_data: &CommonCircuitData<F, D>,
prover_data: &'a ProverOnlyCircuitData<F, D>,
public_inputs_hash: &HashOut<F>,
wires_commitment: &'a PolynomialBatchCommitment<F>,
zs_partial_products_commitment: &'a PolynomialBatchCommitment<F>,
betas: &[F],
gammas: &[F],
alphas: &[F],
) -> Vec<PolynomialCoeffs<F>> {
let num_challenges = common_data.config.num_challenges;
let max_degree_bits = log2_ceil(common_data.quotient_degree_factor);
assert!(
max_degree_bits <= common_data.config.rate_bits,
"Having constraints of degree higher than the rate is not supported yet. \
If we need this in the future, we can precompute the larger LDE before computing the `ListPolynomialCommitment`s."
);
// We reuse the LDE computed in `ListPolynomialCommitment` and extract every `step` points to get
// an LDE matching `max_filtered_constraint_degree`.
let step = 1 << (common_data.config.rate_bits - max_degree_bits);
// When opening the `Z`s polys at the "next" point in Plonk, need to look at the point `next_step`
// steps away since we work on an LDE of degree `max_filtered_constraint_degree`.
let next_step = 1 << max_degree_bits;
let points = F::two_adic_subgroup(common_data.degree_bits + max_degree_bits);
let lde_size = points.len();
// Retrieve the LDE values at index `i`.
let get_at_index = |comm: &'a PolynomialBatchCommitment<F>, i: usize| -> &'a [F] {
comm.get_lde_values(i * step)
};
let z_h_on_coset = ZeroPolyOnCoset::new(common_data.degree_bits, max_degree_bits);
let quotient_values: Vec<Vec<F>> = points
.into_par_iter()
.enumerate()
.map(|(i, x)| {
let shifted_x = F::coset_shift() * x;
let i_next = (i + next_step) % lde_size;
let local_constants_sigmas = get_at_index(&prover_data.constants_sigmas_commitment, i);
let local_constants = &local_constants_sigmas[common_data.constants_range()];
let s_sigmas = &local_constants_sigmas[common_data.sigmas_range()];
let local_wires = get_at_index(wires_commitment, i);
let local_zs_partial_products = get_at_index(zs_partial_products_commitment, i);
let local_zs = &local_zs_partial_products[common_data.zs_range()];
let next_zs =
&get_at_index(zs_partial_products_commitment, i_next)[common_data.zs_range()];
let partial_products = &local_zs_partial_products[common_data.partial_products_range()];
debug_assert_eq!(local_wires.len(), common_data.config.num_wires);
debug_assert_eq!(local_zs.len(), num_challenges);
let vars = EvaluationVarsBase {
local_constants,
local_wires,
public_inputs_hash,
};
let mut quotient_values = eval_vanishing_poly_base(
common_data,
i,
shifted_x,
vars,
local_zs,
next_zs,
partial_products,
s_sigmas,
betas,
gammas,
alphas,
&z_h_on_coset,
);
let denominator_inv = z_h_on_coset.eval_inverse(i);
quotient_values
.iter_mut()
.for_each(|v| *v *= denominator_inv);
quotient_values
})
.collect();
transpose(&quotient_values)
.into_par_iter()
.map(PolynomialValues::new)
.map(|values| values.coset_ifft(F::coset_shift()))
.collect()
}