plonky2/src/gadgets/arithmetic_extension.rs
2021-08-20 11:56:57 +02:00

606 lines
19 KiB
Rust

use std::convert::TryInto;
use crate::field::extension_field::target::{ExtensionAlgebraTarget, ExtensionTarget};
use crate::field::extension_field::FieldExtension;
use crate::field::extension_field::{Extendable, OEF};
use crate::field::field_types::Field;
use crate::gates::arithmetic::{ArithmeticExtensionGate, NUM_ARITHMETIC_OPS};
use crate::iop::generator::{GeneratedValues, SimpleGenerator};
use crate::iop::target::Target;
use crate::iop::witness::{PartitionWitness, Witness};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::util::bits_u64;
impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Finds the last available arithmetic gate with the given constants or add one if there aren't any.
/// Returns `(g,i)` such that there is an arithmetic gate with the given constants at index
/// `g` and the gate's `i`-th operation is available.
fn find_arithmetic_gate(&mut self, const_0: F, const_1: F) -> (usize, usize) {
let (gate, i) = self
.free_arithmetic
.get(&(const_0, const_1))
.copied()
.unwrap_or_else(|| {
let gate = self.add_gate(ArithmeticExtensionGate, vec![const_0, const_1]);
(gate, 0)
});
// Update `free_arithmetic` with new values.
if i < NUM_ARITHMETIC_OPS - 1 {
self.free_arithmetic
.insert((const_0, const_1), (gate, i + 1));
} else {
self.free_arithmetic.remove(&(const_0, const_1));
}
(gate, i)
}
pub fn arithmetic_extension(
&mut self,
const_0: F,
const_1: F,
multiplicand_0: ExtensionTarget<D>,
multiplicand_1: ExtensionTarget<D>,
addend: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
// See if we can determine the result without adding an `ArithmeticGate`.
if let Some(result) = self.arithmetic_extension_special_cases(
const_0,
const_1,
multiplicand_0,
multiplicand_1,
addend,
) {
return result;
}
let (gate, i) = self.find_arithmetic_gate(const_0, const_1);
let wires_multiplicand_0 = ExtensionTarget::from_range(
gate,
ArithmeticExtensionGate::<D>::wires_ith_multiplicand_0(i),
);
let wires_multiplicand_1 = ExtensionTarget::from_range(
gate,
ArithmeticExtensionGate::<D>::wires_ith_multiplicand_1(i),
);
let wires_addend =
ExtensionTarget::from_range(gate, ArithmeticExtensionGate::<D>::wires_ith_addend(i));
self.route_extension(multiplicand_0, wires_multiplicand_0);
self.route_extension(multiplicand_1, wires_multiplicand_1);
self.route_extension(addend, wires_addend);
ExtensionTarget::from_range(gate, ArithmeticExtensionGate::<D>::wires_ith_output(i))
}
/// Checks for special cases where the value of
/// `const_0 * multiplicand_0 * multiplicand_1 + const_1 * addend`
/// can be determined without adding an `ArithmeticGate`.
fn arithmetic_extension_special_cases(
&mut self,
const_0: F,
const_1: F,
multiplicand_0: ExtensionTarget<D>,
multiplicand_1: ExtensionTarget<D>,
addend: ExtensionTarget<D>,
) -> Option<ExtensionTarget<D>> {
let zero = self.zero_extension();
let mul_0_const = self.target_as_constant_ext(multiplicand_0);
let mul_1_const = self.target_as_constant_ext(multiplicand_1);
let addend_const = self.target_as_constant_ext(addend);
let first_term_zero =
const_0 == F::ZERO || multiplicand_0 == zero || multiplicand_1 == zero;
let second_term_zero = const_1 == F::ZERO || addend == zero;
// If both terms are constant, return their (constant) sum.
let first_term_const = if first_term_zero {
Some(F::Extension::ZERO)
} else if let (Some(x), Some(y)) = (mul_0_const, mul_1_const) {
Some((x * y).scalar_mul(const_0))
} else {
None
};
let second_term_const = if second_term_zero {
Some(F::Extension::ZERO)
} else {
addend_const.map(|x| x.scalar_mul(const_1))
};
if let (Some(x), Some(y)) = (first_term_const, second_term_const) {
return Some(self.constant_extension(x + y));
}
if first_term_zero && const_1.is_one() {
return Some(addend);
}
if second_term_zero {
if let Some(x) = mul_0_const {
if x.scalar_mul(const_0).is_one() {
return Some(multiplicand_1);
}
}
if let Some(x) = mul_1_const {
if x.scalar_mul(const_0).is_one() {
return Some(multiplicand_0);
}
}
}
None
}
/// Returns `a*b + c*d + e`.
pub fn wide_arithmetic_extension(
&mut self,
a: ExtensionTarget<D>,
b: ExtensionTarget<D>,
c: ExtensionTarget<D>,
d: ExtensionTarget<D>,
e: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
self.inner_product_extension(F::ONE, e, vec![(a, b), (c, d)])
}
/// Returns `sum_{(a,b) in vecs} constant * a * b`.
pub fn inner_product_extension(
&mut self,
constant: F,
starting_acc: ExtensionTarget<D>,
pairs: Vec<(ExtensionTarget<D>, ExtensionTarget<D>)>,
) -> ExtensionTarget<D> {
let mut acc = starting_acc;
for (a, b) in pairs {
acc = self.arithmetic_extension(constant, F::ONE, a, b, acc);
}
acc
}
pub fn add_extension(
&mut self,
a: ExtensionTarget<D>,
b: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let one = self.one_extension();
self.arithmetic_extension(F::ONE, F::ONE, one, a, b)
}
pub fn add_ext_algebra(
&mut self,
mut a: ExtensionAlgebraTarget<D>,
b: ExtensionAlgebraTarget<D>,
) -> ExtensionAlgebraTarget<D> {
for i in 0..D {
a.0[i] = self.add_extension(a.0[i], b.0[i]);
}
a
}
/// Add `n` `ExtensionTarget`s.
pub fn add_many_extension(&mut self, terms: &[ExtensionTarget<D>]) -> ExtensionTarget<D> {
let mut sum = self.zero_extension();
for &term in terms {
sum = self.add_extension(sum, term);
}
sum
}
pub fn sub_extension(
&mut self,
a: ExtensionTarget<D>,
b: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let one = self.one_extension();
self.arithmetic_extension(F::ONE, F::NEG_ONE, one, a, b)
}
pub fn sub_ext_algebra(
&mut self,
mut a: ExtensionAlgebraTarget<D>,
b: ExtensionAlgebraTarget<D>,
) -> ExtensionAlgebraTarget<D> {
for i in 0..D {
a.0[i] = self.sub_extension(a.0[i], b.0[i]);
}
a
}
pub fn mul_extension_with_const(
&mut self,
const_0: F,
multiplicand_0: ExtensionTarget<D>,
multiplicand_1: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let zero = self.zero_extension();
self.arithmetic_extension(const_0, F::ZERO, multiplicand_0, multiplicand_1, zero)
}
pub fn mul_extension(
&mut self,
multiplicand_0: ExtensionTarget<D>,
multiplicand_1: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
self.mul_extension_with_const(F::ONE, multiplicand_0, multiplicand_1)
}
/// Computes `x^2`.
pub fn square_extension(&mut self, x: ExtensionTarget<D>) -> ExtensionTarget<D> {
self.mul_extension(x, x)
}
/// Computes `x^3`.
pub fn cube_extension(&mut self, x: ExtensionTarget<D>) -> ExtensionTarget<D> {
self.mul_many_extension(&[x, x, x])
}
/// Returns `a * b + c`.
pub fn mul_add_ext_algebra(
&mut self,
a: ExtensionAlgebraTarget<D>,
b: ExtensionAlgebraTarget<D>,
c: ExtensionAlgebraTarget<D>,
) -> ExtensionAlgebraTarget<D> {
let mut inner = vec![vec![]; D];
let mut inner_w = vec![vec![]; D];
for i in 0..D {
for j in 0..D - i {
inner[(i + j) % D].push((a.0[i], b.0[j]));
}
for j in D - i..D {
inner_w[(i + j) % D].push((a.0[i], b.0[j]));
}
}
let res = inner_w
.into_iter()
.zip(inner)
.zip(c.0)
.map(|((pairs_w, pairs), ci)| {
let acc = self.inner_product_extension(F::Extension::W, ci, pairs_w);
self.inner_product_extension(F::ONE, acc, pairs)
})
.collect::<Vec<_>>();
ExtensionAlgebraTarget(res.try_into().unwrap())
}
/// Returns `a * b`.
pub fn mul_ext_algebra(
&mut self,
a: ExtensionAlgebraTarget<D>,
b: ExtensionAlgebraTarget<D>,
) -> ExtensionAlgebraTarget<D> {
let zero = self.zero_ext_algebra();
self.mul_add_ext_algebra(a, b, zero)
}
/// Multiply `n` `ExtensionTarget`s.
pub fn mul_many_extension(&mut self, terms: &[ExtensionTarget<D>]) -> ExtensionTarget<D> {
let mut product = self.one_extension();
for &term in terms {
product = self.mul_extension(product, term);
}
product
}
/// Like `mul_add`, but for `ExtensionTarget`s.
pub fn mul_add_extension(
&mut self,
a: ExtensionTarget<D>,
b: ExtensionTarget<D>,
c: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
self.arithmetic_extension(F::ONE, F::ONE, a, b, c)
}
/// Like `mul_add`, but for `ExtensionTarget`s.
pub fn scalar_mul_add_extension(
&mut self,
a: Target,
b: ExtensionTarget<D>,
c: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let a_ext = self.convert_to_ext(a);
self.arithmetic_extension(F::ONE, F::ONE, a_ext, b, c)
}
/// Like `mul_sub`, but for `ExtensionTarget`s.
pub fn mul_sub_extension(
&mut self,
a: ExtensionTarget<D>,
b: ExtensionTarget<D>,
c: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
self.arithmetic_extension(F::ONE, F::NEG_ONE, a, b, c)
}
/// Like `mul_sub`, but for `ExtensionTarget`s.
pub fn scalar_mul_sub_extension(
&mut self,
a: Target,
b: ExtensionTarget<D>,
c: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let a_ext = self.convert_to_ext(a);
self.arithmetic_extension(F::ONE, F::NEG_ONE, a_ext, b, c)
}
/// Returns `a * b`, where `b` is in the extension field and `a` is in the base field.
pub fn scalar_mul_ext(&mut self, a: Target, b: ExtensionTarget<D>) -> ExtensionTarget<D> {
let a_ext = self.convert_to_ext(a);
self.mul_extension(a_ext, b)
}
/// Returns `a * b + c`, where `b, c` are in the extension algebra and `a` in the extension field.
pub fn scalar_mul_add_ext_algebra(
&mut self,
a: ExtensionTarget<D>,
b: ExtensionAlgebraTarget<D>,
mut c: ExtensionAlgebraTarget<D>,
) -> ExtensionAlgebraTarget<D> {
for i in 0..D {
c.0[i] = self.mul_add_extension(a, b.0[i], c.0[i]);
}
c
}
/// Returns `a * b`, where `b` is in the extension algebra and `a` in the extension field.
pub fn scalar_mul_ext_algebra(
&mut self,
a: ExtensionTarget<D>,
b: ExtensionAlgebraTarget<D>,
) -> ExtensionAlgebraTarget<D> {
let zero = self.zero_ext_algebra();
self.scalar_mul_add_ext_algebra(a, b, zero)
}
/// Exponentiate `base` to the power of `2^power_log`.
// TODO: Test
pub fn exp_power_of_2_extension(
&mut self,
mut base: ExtensionTarget<D>,
power_log: usize,
) -> ExtensionTarget<D> {
for _ in 0..power_log {
base = self.square_extension(base);
}
base
}
/// Exponentiate `base` to the power of a known `exponent`.
// TODO: Test
pub fn exp_u64_extension(
&mut self,
base: ExtensionTarget<D>,
exponent: u64,
) -> ExtensionTarget<D> {
match exponent {
0 => return self.one_extension(),
1 => return base,
2 => return self.square_extension(base),
3 => return self.cube_extension(base),
_ => (),
}
let mut current = base;
let mut product = self.one_extension();
for j in 0..bits_u64(exponent as u64) {
if (exponent >> j & 1) != 0 {
product = self.mul_extension(product, current);
}
current = self.square_extension(current);
}
product
}
/// Computes `x / y`. Results in an unsatisfiable instance if `y = 0`.
pub fn div_extension(
&mut self,
x: ExtensionTarget<D>,
y: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let zero = self.zero_extension();
self.div_add_extension(x, y, zero)
}
/// Computes ` x / y + z`.
pub fn div_add_extension(
&mut self,
x: ExtensionTarget<D>,
y: ExtensionTarget<D>,
z: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let inv = self.add_virtual_extension_target();
let one = self.one_extension();
self.add_generator(QuotientGeneratorExtension {
numerator: one,
denominator: y,
quotient: inv,
});
// Enforce that x times its purported inverse equals 1.
let y_inv = self.mul_extension(y, inv);
self.assert_equal_extension(y_inv, one);
self.mul_add_extension(x, inv, z)
}
/// Computes `1 / x`. Results in an unsatisfiable instance if `x = 0`.
pub fn inverse_extension(&mut self, x: ExtensionTarget<D>) -> ExtensionTarget<D> {
let one = self.one_extension();
self.div_extension(one, x)
}
}
#[derive(Debug)]
struct QuotientGeneratorExtension<const D: usize> {
numerator: ExtensionTarget<D>,
denominator: ExtensionTarget<D>,
quotient: ExtensionTarget<D>,
}
impl<F: Extendable<D>, const D: usize> SimpleGenerator<F> for QuotientGeneratorExtension<D> {
fn dependencies(&self) -> Vec<Target> {
let mut deps = self.numerator.to_target_array().to_vec();
deps.extend(&self.denominator.to_target_array());
deps
}
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
let num = witness.get_extension_target(self.numerator);
let dem = witness.get_extension_target(self.denominator);
let quotient = num / dem;
out_buffer.set_extension_target(self.quotient, quotient)
}
}
/// An iterator over the powers of a certain base element `b`: `b^0, b^1, b^2, ...`.
#[derive(Clone)]
pub struct PowersTarget<const D: usize> {
base: ExtensionTarget<D>,
current: ExtensionTarget<D>,
}
impl<const D: usize> PowersTarget<D> {
pub fn next<F: Extendable<D>>(
&mut self,
builder: &mut CircuitBuilder<F, D>,
) -> ExtensionTarget<D> {
let result = self.current;
self.current = builder.mul_extension(self.base, self.current);
result
}
pub fn repeated_frobenius<F: Extendable<D>>(
self,
k: usize,
builder: &mut CircuitBuilder<F, D>,
) -> Self {
let Self { base, current } = self;
Self {
base: base.repeated_frobenius(k, builder),
current: current.repeated_frobenius(k, builder),
}
}
}
impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
pub fn powers(&mut self, base: ExtensionTarget<D>) -> PowersTarget<D> {
PowersTarget {
base,
current: self.one_extension(),
}
}
}
#[cfg(test)]
mod tests {
use std::convert::TryInto;
use anyhow::Result;
use crate::field::crandall_field::CrandallField;
use crate::field::extension_field::algebra::ExtensionAlgebra;
use crate::field::extension_field::quartic::QuarticCrandallField;
use crate::field::field_types::Field;
use crate::iop::witness::{PartialWitness, Witness};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::circuit_data::CircuitConfig;
use crate::plonk::verifier::verify;
#[test]
fn test_mul_many() -> Result<()> {
type F = CrandallField;
type FF = QuarticCrandallField;
const D: usize = 4;
let config = CircuitConfig::large_config();
let mut pw = PartialWitness::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
let vs = FF::rand_vec(3);
let ts = builder.add_virtual_extension_targets(3);
for (&v, &t) in vs.iter().zip(&ts) {
pw.set_extension_target(t, v);
}
let mul0 = builder.mul_many_extension(&ts);
let mul1 = {
let mut acc = builder.one_extension();
for &t in &ts {
acc = builder.mul_extension(acc, t);
}
acc
};
let mul2 = builder.constant_extension(vs.into_iter().product());
builder.assert_equal_extension(mul0, mul1);
builder.assert_equal_extension(mul1, mul2);
let data = builder.build();
let proof = data.prove(pw)?;
verify(proof, &data.verifier_only, &data.common)
}
#[test]
fn test_div_extension() -> Result<()> {
type F = CrandallField;
type FF = QuarticCrandallField;
const D: usize = 4;
let config = CircuitConfig::large_zk_config();
let pw = PartialWitness::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
let x = FF::rand();
let y = FF::rand();
let z = x / y;
let xt = builder.constant_extension(x);
let yt = builder.constant_extension(y);
let zt = builder.constant_extension(z);
let comp_zt = builder.div_extension(xt, yt);
let comp_zt_unsafe = builder.div_extension(xt, yt);
builder.assert_equal_extension(zt, comp_zt);
builder.assert_equal_extension(zt, comp_zt_unsafe);
let data = builder.build();
let proof = data.prove(pw)?;
verify(proof, &data.verifier_only, &data.common)
}
#[test]
fn test_mul_algebra() -> Result<()> {
type F = CrandallField;
type FF = QuarticCrandallField;
const D: usize = 4;
let config = CircuitConfig::large_config();
let pw = PartialWitness::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
let x = FF::rand_vec(4);
let y = FF::rand_vec(4);
let xa = ExtensionAlgebra(x.try_into().unwrap());
let ya = ExtensionAlgebra(y.try_into().unwrap());
let za = xa * ya;
let xt = builder.constant_ext_algebra(xa);
let yt = builder.constant_ext_algebra(ya);
let zt = builder.constant_ext_algebra(za);
let comp_zt = builder.mul_ext_algebra(xt, yt);
for i in 0..D {
builder.assert_equal_extension(zt.0[i], comp_zt.0[i]);
}
let data = builder.build();
let proof = data.prove(pw)?;
verify(proof, &data.verifier_only, &data.common)
}
}