plonky2/src/prover.rs
Daniel Lubarov cb7f8c8b8c
Draw challenge points from the extension field (#51)
* Draw challenge points from the extension field

* Now building

* Misc

* Default eval_unfiltered_base

* fmt

* A few field settings

* Add to Sage

* Display tweak

* eval_filtered_base

* Quartic in bench

* Missing methods

* Fix tests

* PR feedback
2021-05-30 13:25:53 -07:00

283 lines
9.3 KiB
Rust

use std::time::Instant;
use log::info;
use rayon::prelude::*;
use crate::circuit_data::{CommonCircuitData, ProverOnlyCircuitData};
use crate::field::extension_field::Extendable;
use crate::field::fft::ifft;
use crate::field::field::Field;
use crate::generator::generate_partial_witness;
use crate::plonk_challenger::Challenger;
use crate::plonk_common::{eval_l_1, evaluate_gate_constraints_base, reduce_with_powers_multi};
use crate::polynomial::commitment::ListPolynomialCommitment;
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
use crate::proof::Proof;
use crate::timed;
use crate::util::transpose;
use crate::vars::EvaluationVarsBase;
use crate::wire::Wire;
use crate::witness::PartialWitness;
/// Corresponds to constants - sigmas - wires - zs - quotient — polynomial commitments.
pub const PLONK_BLINDING: [bool; 5] = [false, false, true, true, true];
pub(crate) fn prove<F: Extendable<D>, const D: usize>(
prover_data: &ProverOnlyCircuitData<F>,
common_data: &CommonCircuitData<F, D>,
inputs: PartialWitness<F>,
) -> Proof<F, D> {
let fri_config = &common_data.config.fri_config;
let start_proof_gen = Instant::now();
let mut witness = inputs;
info!("Running {} generators", prover_data.generators.len());
timed!(
generate_partial_witness(&mut witness, &prover_data.generators),
"to generate witness"
);
let config = &common_data.config;
let num_wires = config.num_wires;
let num_challenges = config.num_challenges;
let quotient_degree = common_data.quotient_degree();
let degree = common_data.degree();
let wires_polynomials: Vec<PolynomialCoeffs<F>> = timed!(
(0..num_wires)
.into_par_iter()
.map(|i| compute_wire_polynomial(i, &witness, degree))
.collect(),
"to compute wire polynomials"
);
// TODO: Could try parallelizing the transpose, or not doing it explicitly, instead having
// merkle_root_bit_rev_order do it implicitly.
let wires_commitment = timed!(
ListPolynomialCommitment::new(wires_polynomials, fri_config.rate_bits, true),
"to compute wires commitment"
);
let mut challenger = Challenger::new();
// Observe the instance.
// TODO: Need to include public inputs as well.
challenger.observe_hash(&common_data.circuit_digest);
challenger.observe_hash(&wires_commitment.merkle_tree.root);
let betas = challenger.get_n_challenges(num_challenges);
let gammas = challenger.get_n_challenges(num_challenges);
let plonk_z_vecs = timed!(compute_zs(&common_data), "to compute Z's");
let plonk_zs_commitment = timed!(
ListPolynomialCommitment::new(plonk_z_vecs, fri_config.rate_bits, true),
"to commit to Z's"
);
challenger.observe_hash(&plonk_zs_commitment.merkle_tree.root);
let alphas = challenger.get_n_challenges(num_challenges);
let vanishing_polys = timed!(
compute_vanishing_polys(
common_data,
prover_data,
&wires_commitment,
&plonk_zs_commitment,
&betas,
&gammas,
&alphas,
),
"to compute vanishing polys"
);
// Compute the quotient polynomials, aka `t` in the Plonk paper.
let all_quotient_poly_chunks = timed!(
vanishing_polys
.into_par_iter()
.flat_map(|vanishing_poly| {
let vanishing_poly_coeff = ifft(vanishing_poly);
let quotient_poly_coeff = vanishing_poly_coeff.divide_by_z_h(degree);
// Split t into degree-n chunks.
quotient_poly_coeff.chunks(degree)
})
.collect(),
"to compute quotient polys"
);
let quotient_polys_commitment = timed!(
ListPolynomialCommitment::new(all_quotient_poly_chunks, fri_config.rate_bits, true),
"to commit to quotient polys"
);
challenger.observe_hash(&quotient_polys_commitment.merkle_tree.root);
let zeta = challenger.get_extension_challenge();
let (opening_proof, openings) = timed!(
ListPolynomialCommitment::batch_open_plonk(
&[
&prover_data.constants_commitment,
&prover_data.sigmas_commitment,
&wires_commitment,
&plonk_zs_commitment,
&quotient_polys_commitment,
],
&[zeta],
&mut challenger,
&common_data.config.fri_config
),
"to compute opening proofs"
);
info!(
"{:.3}s for overall witness & proof generation",
start_proof_gen.elapsed().as_secs_f32()
);
Proof {
wires_root: wires_commitment.merkle_tree.root,
plonk_zs_root: plonk_zs_commitment.merkle_tree.root,
quotient_polys_root: quotient_polys_commitment.merkle_tree.root,
openings,
opening_proof,
}
}
fn compute_zs<F: Extendable<D>, const D: usize>(
common_data: &CommonCircuitData<F, D>,
) -> Vec<PolynomialCoeffs<F>> {
(0..common_data.config.num_challenges)
.map(|i| compute_z(common_data, i))
.collect()
}
fn compute_z<F: Extendable<D>, const D: usize>(
common_data: &CommonCircuitData<F, D>,
_i: usize,
) -> PolynomialCoeffs<F> {
PolynomialCoeffs::zero(common_data.degree()) // TODO
}
fn compute_vanishing_polys<F: Extendable<D>, const D: usize>(
common_data: &CommonCircuitData<F, D>,
prover_data: &ProverOnlyCircuitData<F>,
wires_commitment: &ListPolynomialCommitment<F>,
plonk_zs_commitment: &ListPolynomialCommitment<F>,
betas: &[F],
gammas: &[F],
alphas: &[F],
) -> Vec<PolynomialValues<F>> {
let lde_size = common_data.lde_size();
let lde_gen = common_data.lde_generator();
let num_challenges = common_data.config.num_challenges;
let points = F::cyclic_subgroup_known_order(lde_gen, lde_size);
let values: Vec<Vec<F>> = points
.into_par_iter()
.enumerate()
.map(|(i, x)| {
let i_next = (i + 1) % lde_size;
let local_wires = wires_commitment.leaf(i);
let local_constants = prover_data.constants_commitment.leaf(i);
let local_plonk_zs = plonk_zs_commitment.leaf(i);
let next_plonk_zs = plonk_zs_commitment.leaf(i_next);
let s_sigmas = prover_data.sigmas_commitment.leaf(i);
debug_assert_eq!(local_wires.len(), common_data.config.num_wires);
debug_assert_eq!(local_plonk_zs.len(), num_challenges);
let vars = EvaluationVarsBase {
local_constants,
local_wires,
};
compute_vanishing_poly_entry(
common_data,
x,
vars,
local_plonk_zs,
next_plonk_zs,
s_sigmas,
betas,
gammas,
alphas,
)
})
.collect();
transpose(&values)
.into_iter()
.map(PolynomialValues::new)
.collect()
}
/// Evaluate the vanishing polynomial at `x`. In this context, the vanishing polynomial is a random
/// linear combination of gate constraints, plus some other terms relating to the permutation
/// argument. All such terms should vanish on `H`.
fn compute_vanishing_poly_entry<F: Extendable<D>, const D: usize>(
common_data: &CommonCircuitData<F, D>,
x: F,
vars: EvaluationVarsBase<F>,
local_plonk_zs: &[F],
next_plonk_zs: &[F],
s_sigmas: &[F],
betas: &[F],
gammas: &[F],
alphas: &[F],
) -> Vec<F> {
let constraint_terms =
evaluate_gate_constraints_base(&common_data.gates, common_data.num_gate_constraints, vars);
// The L_1(x) (Z(x) - 1) vanishing terms.
let mut vanishing_z_1_terms = Vec::new();
// The Z(x) f'(x) - g'(x) Z(g x) terms.
let mut vanishing_v_shift_terms = Vec::new();
for i in 0..common_data.config.num_challenges {
let z_x = local_plonk_zs[i];
let z_gz = next_plonk_zs[i];
vanishing_z_1_terms.push(eval_l_1(common_data.degree(), x) * (z_x - F::ONE));
let mut f_prime = F::ONE;
let mut g_prime = F::ONE;
for j in 0..common_data.config.num_routed_wires {
let wire_value = vars.local_wires[j];
let k_i = common_data.k_is[j];
let s_id = k_i * x;
let s_sigma = s_sigmas[j];
f_prime *= wire_value + betas[i] * s_id + gammas[i];
g_prime *= wire_value + betas[i] * s_sigma + gammas[i];
}
vanishing_v_shift_terms.push(f_prime * z_x - g_prime * z_gz);
}
let vanishing_terms = [
vanishing_z_1_terms,
vanishing_v_shift_terms,
constraint_terms,
]
.concat();
reduce_with_powers_multi(&vanishing_terms, alphas)
}
fn compute_wire_polynomial<F: Field>(
input: usize,
witness: &PartialWitness<F>,
degree: usize,
) -> PolynomialCoeffs<F> {
let wire_values = (0..degree)
// Some gates do not use all wires, and we do not require that generators populate unused
// wires, so some wire values will not be set. We can set these to any value; here we
// arbitrary pick zero. Ideally we would verify that no constraints operate on these unset
// wires, but that isn't trivial.
.map(|gate| {
witness
.try_get_wire(Wire { gate, input })
.unwrap_or(F::ZERO)
})
.collect();
PolynomialValues::new(wire_values).ifft()
}