plonky2/field/src/goldilocks_field.rs
Robin Salen cb19f21994
Add crate-level documentation (#1444)
* Add crate-level documentation

* Revert change

* Skip

* Typo

* Apply comments

* Rephrase paragraph

* Apply comments
2024-01-08 14:08:53 +01:00

464 lines
14 KiB
Rust

use core::fmt::{self, Debug, Display, Formatter};
use core::hash::{Hash, Hasher};
use core::iter::{Product, Sum};
use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use num::{BigUint, Integer, ToPrimitive};
use plonky2_util::{assume, branch_hint};
use serde::{Deserialize, Serialize};
use crate::ops::Square;
use crate::types::{Field, Field64, PrimeField, PrimeField64, Sample};
const EPSILON: u64 = (1 << 32) - 1;
/// A field selected to have fast reduction.
///
/// Its order is 2^64 - 2^32 + 1.
/// ```ignore
/// P = 2**64 - EPSILON
/// = 2**64 - 2**32 + 1
/// = 2**32 * (2**32 - 1) + 1
/// ```
#[derive(Copy, Clone, Serialize, Deserialize)]
#[repr(transparent)]
pub struct GoldilocksField(pub u64);
impl Default for GoldilocksField {
fn default() -> Self {
Self::ZERO
}
}
impl PartialEq for GoldilocksField {
fn eq(&self, other: &Self) -> bool {
self.to_canonical_u64() == other.to_canonical_u64()
}
}
impl Eq for GoldilocksField {}
impl Hash for GoldilocksField {
fn hash<H: Hasher>(&self, state: &mut H) {
state.write_u64(self.to_canonical_u64())
}
}
impl Display for GoldilocksField {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
Display::fmt(&self.to_canonical_u64(), f)
}
}
impl Debug for GoldilocksField {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
Debug::fmt(&self.to_canonical_u64(), f)
}
}
impl Sample for GoldilocksField {
#[inline]
fn sample<R>(rng: &mut R) -> Self
where
R: rand::RngCore + ?Sized,
{
use rand::Rng;
Self::from_canonical_u64(rng.gen_range(0..Self::ORDER))
}
}
impl Field for GoldilocksField {
const ZERO: Self = Self(0);
const ONE: Self = Self(1);
const TWO: Self = Self(2);
const NEG_ONE: Self = Self(Self::ORDER - 1);
const TWO_ADICITY: usize = 32;
const CHARACTERISTIC_TWO_ADICITY: usize = Self::TWO_ADICITY;
// Sage: `g = GF(p).multiplicative_generator()`
const MULTIPLICATIVE_GROUP_GENERATOR: Self = Self(7);
// Sage:
// ```
// g_2 = g^((p - 1) / 2^32)
// g_2.multiplicative_order().factor()
// ```
const POWER_OF_TWO_GENERATOR: Self = Self(1753635133440165772);
const BITS: usize = 64;
fn order() -> BigUint {
Self::ORDER.into()
}
fn characteristic() -> BigUint {
Self::order()
}
/// Returns the inverse of the field element, using Fermat's little theorem.
/// The inverse of `a` is computed as `a^(p-2)`, where `p` is the prime order of the field.
///
/// Mathematically, this is equivalent to:
/// $a^(p-1) = 1 (mod p)$
/// $a^(p-2) * a = 1 (mod p)$
/// Therefore $a^(p-2) = a^-1 (mod p)$
///
/// The following code has been adapted from winterfell/math/src/field/f64/mod.rs
/// located at <https://github.com/facebook/winterfell>.
fn try_inverse(&self) -> Option<Self> {
if self.is_zero() {
return None;
}
// compute base^(P - 2) using 72 multiplications
// The exponent P - 2 is represented in binary as:
// 0b1111111111111111111111111111111011111111111111111111111111111111
// compute base^11
let t2 = self.square() * *self;
// compute base^111
let t3 = t2.square() * *self;
// compute base^111111 (6 ones)
// repeatedly square t3 3 times and multiply by t3
let t6 = exp_acc::<3>(t3, t3);
// compute base^111111111111 (12 ones)
// repeatedly square t6 6 times and multiply by t6
let t12 = exp_acc::<6>(t6, t6);
// compute base^111111111111111111111111 (24 ones)
// repeatedly square t12 12 times and multiply by t12
let t24 = exp_acc::<12>(t12, t12);
// compute base^1111111111111111111111111111111 (31 ones)
// repeatedly square t24 6 times and multiply by t6 first. then square t30 and
// multiply by base
let t30 = exp_acc::<6>(t24, t6);
let t31 = t30.square() * *self;
// compute base^111111111111111111111111111111101111111111111111111111111111111
// repeatedly square t31 32 times and multiply by t31
let t63 = exp_acc::<32>(t31, t31);
// compute base^1111111111111111111111111111111011111111111111111111111111111111
Some(t63.square() * *self)
}
fn from_noncanonical_biguint(n: BigUint) -> Self {
Self(n.mod_floor(&Self::order()).to_u64().unwrap())
}
#[inline(always)]
fn from_canonical_u64(n: u64) -> Self {
debug_assert!(n < Self::ORDER);
Self(n)
}
fn from_noncanonical_u96((n_lo, n_hi): (u64, u32)) -> Self {
reduce96((n_lo, n_hi))
}
fn from_noncanonical_u128(n: u128) -> Self {
reduce128(n)
}
#[inline]
fn from_noncanonical_u64(n: u64) -> Self {
Self(n)
}
#[inline]
fn from_noncanonical_i64(n: i64) -> Self {
Self::from_canonical_u64(if n < 0 {
// If n < 0, then this is guaranteed to overflow since
// both arguments have their high bit set, so the result
// is in the canonical range.
Self::ORDER.wrapping_add(n as u64)
} else {
n as u64
})
}
#[inline]
fn multiply_accumulate(&self, x: Self, y: Self) -> Self {
// u64 + u64 * u64 cannot overflow.
reduce128((self.0 as u128) + (x.0 as u128) * (y.0 as u128))
}
}
impl PrimeField for GoldilocksField {
fn to_canonical_biguint(&self) -> BigUint {
self.to_canonical_u64().into()
}
}
impl Field64 for GoldilocksField {
const ORDER: u64 = 0xFFFFFFFF00000001;
#[inline]
unsafe fn add_canonical_u64(&self, rhs: u64) -> Self {
let (res_wrapped, carry) = self.0.overflowing_add(rhs);
// Add EPSILON * carry cannot overflow unless rhs is not in canonical form.
Self(res_wrapped + EPSILON * (carry as u64))
}
#[inline]
unsafe fn sub_canonical_u64(&self, rhs: u64) -> Self {
let (res_wrapped, borrow) = self.0.overflowing_sub(rhs);
// Sub EPSILON * carry cannot underflow unless rhs is not in canonical form.
Self(res_wrapped - EPSILON * (borrow as u64))
}
}
impl PrimeField64 for GoldilocksField {
#[inline]
fn to_canonical_u64(&self) -> u64 {
let mut c = self.0;
// We only need one condition subtraction, since 2 * ORDER would not fit in a u64.
if c >= Self::ORDER {
c -= Self::ORDER;
}
c
}
#[inline(always)]
fn to_noncanonical_u64(&self) -> u64 {
self.0
}
}
impl Neg for GoldilocksField {
type Output = Self;
#[inline]
fn neg(self) -> Self {
if self.is_zero() {
Self::ZERO
} else {
Self(Self::ORDER - self.to_canonical_u64())
}
}
}
impl Add for GoldilocksField {
type Output = Self;
#[inline]
#[allow(clippy::suspicious_arithmetic_impl)]
fn add(self, rhs: Self) -> Self {
let (sum, over) = self.0.overflowing_add(rhs.0);
let (mut sum, over) = sum.overflowing_add((over as u64) * EPSILON);
if over {
// NB: self.0 > Self::ORDER && rhs.0 > Self::ORDER is necessary but not sufficient for
// double-overflow.
// This assume does two things:
// 1. If compiler knows that either self.0 or rhs.0 <= ORDER, then it can skip this
// check.
// 2. Hints to the compiler how rare this double-overflow is (thus handled better with
// a branch).
assume(self.0 > Self::ORDER && rhs.0 > Self::ORDER);
branch_hint();
sum += EPSILON; // Cannot overflow.
}
Self(sum)
}
}
impl AddAssign for GoldilocksField {
#[inline]
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl Sum for GoldilocksField {
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::ZERO, |acc, x| acc + x)
}
}
impl Sub for GoldilocksField {
type Output = Self;
#[inline]
#[allow(clippy::suspicious_arithmetic_impl)]
fn sub(self, rhs: Self) -> Self {
let (diff, under) = self.0.overflowing_sub(rhs.0);
let (mut diff, under) = diff.overflowing_sub((under as u64) * EPSILON);
if under {
// NB: self.0 < EPSILON - 1 && rhs.0 > Self::ORDER is necessary but not sufficient for
// double-underflow.
// This assume does two things:
// 1. If compiler knows that either self.0 >= EPSILON - 1 or rhs.0 <= ORDER, then it
// can skip this check.
// 2. Hints to the compiler how rare this double-underflow is (thus handled better
// with a branch).
assume(self.0 < EPSILON - 1 && rhs.0 > Self::ORDER);
branch_hint();
diff -= EPSILON; // Cannot underflow.
}
Self(diff)
}
}
impl SubAssign for GoldilocksField {
#[inline]
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl Mul for GoldilocksField {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self {
reduce128((self.0 as u128) * (rhs.0 as u128))
}
}
impl MulAssign for GoldilocksField {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl Product for GoldilocksField {
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::ONE, |acc, x| acc * x)
}
}
impl Div for GoldilocksField {
type Output = Self;
#[allow(clippy::suspicious_arithmetic_impl)]
fn div(self, rhs: Self) -> Self::Output {
self * rhs.inverse()
}
}
impl DivAssign for GoldilocksField {
fn div_assign(&mut self, rhs: Self) {
*self = *self / rhs;
}
}
/// Fast addition modulo ORDER for x86-64.
/// This function is marked unsafe for the following reasons:
/// - It is only correct if x + y < 2**64 + ORDER = 0x1ffffffff00000001.
/// - It is only faster in some circumstances. In particular, on x86 it overwrites both inputs in
/// the registers, so its use is not recommended when either input will be used again.
#[inline(always)]
#[cfg(target_arch = "x86_64")]
unsafe fn add_no_canonicalize_trashing_input(x: u64, y: u64) -> u64 {
let res_wrapped: u64;
let adjustment: u64;
core::arch::asm!(
"add {0}, {1}",
// Trick. The carry flag is set iff the addition overflowed.
// sbb x, y does x := x - y - CF. In our case, x and y are both {1:e}, so it simply does
// {1:e} := 0xffffffff on overflow and {1:e} := 0 otherwise. {1:e} is the low 32 bits of
// {1}; the high 32-bits are zeroed on write. In the end, we end up with 0xffffffff in {1}
// on overflow; this happens be EPSILON.
// Note that the CPU does not realize that the result of sbb x, x does not actually depend
// on x. We must write the result to a register that we know to be ready. We have a
// dependency on {1} anyway, so let's use it.
"sbb {1:e}, {1:e}",
inlateout(reg) x => res_wrapped,
inlateout(reg) y => adjustment,
options(pure, nomem, nostack),
);
assume(x != 0 || (res_wrapped == y && adjustment == 0));
assume(y != 0 || (res_wrapped == x && adjustment == 0));
// Add EPSILON == subtract ORDER.
// Cannot overflow unless the assumption if x + y < 2**64 + ORDER is incorrect.
res_wrapped + adjustment
}
#[inline(always)]
#[cfg(not(target_arch = "x86_64"))]
const unsafe fn add_no_canonicalize_trashing_input(x: u64, y: u64) -> u64 {
let (res_wrapped, carry) = x.overflowing_add(y);
// Below cannot overflow unless the assumption if x + y < 2**64 + ORDER is incorrect.
res_wrapped + EPSILON * (carry as u64)
}
/// Reduces to a 64-bit value. The result might not be in canonical form; it could be in between the
/// field order and `2^64`.
#[inline]
fn reduce96((x_lo, x_hi): (u64, u32)) -> GoldilocksField {
let t1 = x_hi as u64 * EPSILON;
let t2 = unsafe { add_no_canonicalize_trashing_input(x_lo, t1) };
GoldilocksField(t2)
}
/// Reduces to a 64-bit value. The result might not be in canonical form; it could be in between the
/// field order and `2^64`.
#[inline]
fn reduce128(x: u128) -> GoldilocksField {
let (x_lo, x_hi) = split(x); // This is a no-op
let x_hi_hi = x_hi >> 32;
let x_hi_lo = x_hi & EPSILON;
let (mut t0, borrow) = x_lo.overflowing_sub(x_hi_hi);
if borrow {
branch_hint(); // A borrow is exceedingly rare. It is faster to branch.
t0 -= EPSILON; // Cannot underflow.
}
let t1 = x_hi_lo * EPSILON;
let t2 = unsafe { add_no_canonicalize_trashing_input(t0, t1) };
GoldilocksField(t2)
}
#[inline]
const fn split(x: u128) -> (u64, u64) {
(x as u64, (x >> 64) as u64)
}
/// Reduce the value x_lo + x_hi * 2^128 to an element in the
/// Goldilocks field.
///
/// This function is marked 'unsafe' because correctness relies on the
/// unchecked assumption that x < 2^160 - 2^128 + 2^96. Further,
/// performance may degrade as x_hi increases beyond 2**40 or so.
#[inline(always)]
pub(crate) unsafe fn reduce160(x_lo: u128, x_hi: u32) -> GoldilocksField {
let x_hi = (x_lo >> 96) as u64 + ((x_hi as u64) << 32); // shld to form x_hi
let x_mid = (x_lo >> 64) as u32; // shr to form x_mid
let x_lo = x_lo as u64;
// sub + jc (should fuse)
let (mut t0, borrow) = x_lo.overflowing_sub(x_hi);
if borrow {
// The maximum possible value of x is (2^64 - 1)^2 * 4 * 7 < 2^133,
// so x_hi < 2^37. A borrow will happen roughly one in 134 million
// times, so it's best to branch.
branch_hint();
// NB: this assumes that x < 2^160 - 2^128 + 2^96.
t0 -= EPSILON; // Cannot underflow if x_hi is canonical.
}
// imul
let t1 = (x_mid as u64) * EPSILON;
// add, sbb, add
let t2 = add_no_canonicalize_trashing_input(t0, t1);
GoldilocksField(t2)
}
/// Squares the base N number of times and multiplies the result by the tail value.
#[inline(always)]
fn exp_acc<const N: usize>(base: GoldilocksField, tail: GoldilocksField) -> GoldilocksField {
base.exp_power_of_2(N) * tail
}
#[cfg(test)]
mod tests {
use crate::{test_field_arithmetic, test_prime_field_arithmetic};
test_prime_field_arithmetic!(crate::goldilocks_field::GoldilocksField);
test_field_arithmetic!(crate::goldilocks_field::GoldilocksField);
}