plonky2/evm/src/stark.rs
Brandon H. Gomes 6fd0da216a
fix: remove unstable features from plonky2
Signed-off-by: Brandon H. Gomes <bhgomes@pm.me>
2022-11-02 17:50:31 -07:00

239 lines
8.8 KiB
Rust

use plonky2::field::extension::{Extendable, FieldExtension};
use plonky2::field::packed::PackedField;
use plonky2::field::types::Field;
use plonky2::fri::structure::{
FriBatchInfo, FriBatchInfoTarget, FriInstanceInfo, FriInstanceInfoTarget, FriOracleInfo,
FriPolynomialInfo,
};
use plonky2::hash::hash_types::RichField;
use plonky2::iop::ext_target::ExtensionTarget;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2_util::ceil_div_usize;
use crate::config::StarkConfig;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::permutation::PermutationPair;
use crate::vars::{StarkEvaluationTargets, StarkEvaluationVars};
const TRACE_ORACLE_INDEX: usize = 0;
const PERMUTATION_CTL_ORACLE_INDEX: usize = 1;
const QUOTIENT_ORACLE_INDEX: usize = 2;
/// Represents a STARK system.
pub trait Stark<F: RichField + Extendable<D>, const D: usize>: Sync {
/// The total number of columns in the trace.
const COLUMNS: usize;
/// Evaluate constraints at a vector of points.
///
/// The points are elements of a field `FE`, a degree `D2` extension of `F`. This lets us
/// evaluate constraints over a larger domain if desired. This can also be called with `FE = F`
/// and `D2 = 1`, in which case we are using the trivial extension, i.e. just evaluating
/// constraints over `F`.
fn eval_packed_generic<FE, P, const D2: usize>(
&self,
vars: StarkEvaluationVars<FE, P, { Self::COLUMNS }>,
yield_constr: &mut ConstraintConsumer<P>,
) where
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>;
/// Evaluate constraints at a vector of points from the base field `F`.
fn eval_packed_base<P: PackedField<Scalar = F>>(
&self,
vars: StarkEvaluationVars<F, P, { Self::COLUMNS }>,
yield_constr: &mut ConstraintConsumer<P>,
) {
self.eval_packed_generic(vars, yield_constr)
}
/// Evaluate constraints at a single point from the degree `D` extension field.
fn eval_ext(
&self,
vars: StarkEvaluationVars<F::Extension, F::Extension, { Self::COLUMNS }>,
yield_constr: &mut ConstraintConsumer<F::Extension>,
) {
self.eval_packed_generic(vars, yield_constr)
}
/// Evaluate constraints at a vector of points from the degree `D` extension field. This is like
/// `eval_ext`, except in the context of a recursive circuit.
/// Note: constraints must be added through`yeld_constr.constraint(builder, constraint)` in the
/// same order as they are given in `eval_packed_generic`.
fn eval_ext_circuit(
&self,
builder: &mut CircuitBuilder<F, D>,
vars: StarkEvaluationTargets<D, { Self::COLUMNS }>,
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
);
/// The maximum constraint degree.
fn constraint_degree(&self) -> usize;
/// The maximum constraint degree.
fn quotient_degree_factor(&self) -> usize {
1.max(self.constraint_degree() - 1)
}
fn num_quotient_polys(&self, config: &StarkConfig) -> usize {
self.quotient_degree_factor() * config.num_challenges
}
/// Computes the FRI instance used to prove this Stark.
fn fri_instance(
&self,
zeta: F::Extension,
g: F,
degree_bits: usize,
num_ctl_zs: usize,
config: &StarkConfig,
) -> FriInstanceInfo<F, D> {
let trace_oracle = FriOracleInfo {
num_polys: Self::COLUMNS,
blinding: false,
};
let trace_info = FriPolynomialInfo::from_range(TRACE_ORACLE_INDEX, 0..Self::COLUMNS);
let num_permutation_batches = self.num_permutation_batches(config);
let num_perutation_ctl_polys = num_permutation_batches + num_ctl_zs;
let permutation_ctl_oracle = FriOracleInfo {
num_polys: num_perutation_ctl_polys,
blinding: false,
};
let permutation_ctl_zs_info = FriPolynomialInfo::from_range(
PERMUTATION_CTL_ORACLE_INDEX,
0..num_perutation_ctl_polys,
);
let ctl_zs_info = FriPolynomialInfo::from_range(
PERMUTATION_CTL_ORACLE_INDEX,
num_permutation_batches..num_permutation_batches + num_ctl_zs,
);
let num_quotient_polys = self.num_quotient_polys(config);
let quotient_oracle = FriOracleInfo {
num_polys: num_quotient_polys,
blinding: false,
};
let quotient_info =
FriPolynomialInfo::from_range(QUOTIENT_ORACLE_INDEX, 0..num_quotient_polys);
let zeta_batch = FriBatchInfo {
point: zeta,
polynomials: [
trace_info.clone(),
permutation_ctl_zs_info.clone(),
quotient_info,
]
.concat(),
};
let zeta_next_batch = FriBatchInfo {
point: zeta.scalar_mul(g),
polynomials: [trace_info, permutation_ctl_zs_info].concat(),
};
let ctl_last_batch = FriBatchInfo {
point: F::Extension::primitive_root_of_unity(degree_bits).inverse(),
polynomials: ctl_zs_info,
};
FriInstanceInfo {
oracles: vec![trace_oracle, permutation_ctl_oracle, quotient_oracle],
batches: vec![zeta_batch, zeta_next_batch, ctl_last_batch],
}
}
/// Computes the FRI instance used to prove this Stark.
fn fri_instance_target(
&self,
builder: &mut CircuitBuilder<F, D>,
zeta: ExtensionTarget<D>,
g: F,
degree_bits: usize,
num_ctl_zs: usize,
inner_config: &StarkConfig,
) -> FriInstanceInfoTarget<D> {
let trace_oracle = FriOracleInfo {
num_polys: Self::COLUMNS,
blinding: false,
};
let trace_info = FriPolynomialInfo::from_range(TRACE_ORACLE_INDEX, 0..Self::COLUMNS);
let num_permutation_batches = self.num_permutation_batches(inner_config);
let num_perutation_ctl_polys = num_permutation_batches + num_ctl_zs;
let permutation_ctl_oracle = FriOracleInfo {
num_polys: num_perutation_ctl_polys,
blinding: false,
};
let permutation_ctl_zs_info = FriPolynomialInfo::from_range(
PERMUTATION_CTL_ORACLE_INDEX,
0..num_perutation_ctl_polys,
);
let ctl_zs_info = FriPolynomialInfo::from_range(
PERMUTATION_CTL_ORACLE_INDEX,
num_permutation_batches..num_permutation_batches + num_ctl_zs,
);
let num_quotient_polys = self.num_quotient_polys(inner_config);
let quotient_oracle = FriOracleInfo {
num_polys: num_quotient_polys,
blinding: false,
};
let quotient_info =
FriPolynomialInfo::from_range(QUOTIENT_ORACLE_INDEX, 0..num_quotient_polys);
let zeta_batch = FriBatchInfoTarget {
point: zeta,
polynomials: [
trace_info.clone(),
permutation_ctl_zs_info.clone(),
quotient_info,
]
.concat(),
};
let zeta_next = builder.mul_const_extension(g, zeta);
let zeta_next_batch = FriBatchInfoTarget {
point: zeta_next,
polynomials: [trace_info, permutation_ctl_zs_info].concat(),
};
let ctl_last_batch = FriBatchInfoTarget {
point: builder
.constant_extension(F::Extension::primitive_root_of_unity(degree_bits).inverse()),
polynomials: ctl_zs_info,
};
FriInstanceInfoTarget {
oracles: vec![trace_oracle, permutation_ctl_oracle, quotient_oracle],
batches: vec![zeta_batch, zeta_next_batch, ctl_last_batch],
}
}
/// Pairs of lists of columns that should be permutations of one another. A permutation argument
/// will be used for each such pair. Empty by default.
fn permutation_pairs(&self) -> Vec<PermutationPair> {
vec![]
}
fn uses_permutation_args(&self) -> bool {
!self.permutation_pairs().is_empty()
}
/// The number of permutation argument instances that can be combined into a single constraint.
fn permutation_batch_size(&self) -> usize {
// The permutation argument constraints look like
// Z(x) \prod(...) = Z(g x) \prod(...)
// where each product has a number of terms equal to the batch size. So our batch size
// should be one less than our constraint degree, which happens to be our quotient degree.
self.quotient_degree_factor()
}
fn num_permutation_instances(&self, config: &StarkConfig) -> usize {
self.permutation_pairs().len() * config.num_challenges
}
fn num_permutation_batches(&self, config: &StarkConfig) -> usize {
ceil_div_usize(
self.num_permutation_instances(config),
self.permutation_batch_size(),
)
}
}