mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-07 16:23:12 +00:00
* First draft of linking arithmetic Stark into the CTL mechanism.
* Handle {ADD,SUB,MUL}FP254 operations explicitly in `modular.rs`.
* Adjust argument order; add tests.
* Add CTLs for ADD, MUL, SUB, LT and GT.
* Add CTLs for {ADD,MUL,SUB}MOD, DIV and MOD.
* Add CTLs for {ADD,MUL,SUB}FP254 operations.
* Refactor the CPU/arithmetic CTL mapping; add some documentation.
* Minor comment fixes.
* Combine addcy CTLs at the expense of repeated constraint evaluation.
* Combine addcy CTLs at the expense of repeated constraint evaluation.
* Merge `*FP254` CTL into main CTL; rename some registers.
* Connect extra argument from CPU in binary ops to facilitate combining with ternary ops.
* Merge modular ops CTL into main CTL.
* Refactor DIV and MOD code into its own module.
* Merge DIV and MOD into arithmetic CTL.
* Clippy.
* Fixes related to merge.
* Simplify register naming.
* Generate u16 BN254 modulus limbs at compile time.
* Clippy.
* Add degree bits ranges for Arithmetic table.
303 lines
10 KiB
Rust
303 lines
10 KiB
Rust
use std::any::type_name;
|
|
|
|
use anyhow::{ensure, Result};
|
|
use plonky2::field::extension::{Extendable, FieldExtension};
|
|
use plonky2::field::types::Field;
|
|
use plonky2::fri::verifier::verify_fri_proof;
|
|
use plonky2::hash::hash_types::RichField;
|
|
use plonky2::plonk::config::GenericConfig;
|
|
use plonky2::plonk::plonk_common::reduce_with_powers;
|
|
|
|
use crate::all_stark::{AllStark, Table};
|
|
use crate::arithmetic::arithmetic_stark::ArithmeticStark;
|
|
use crate::config::StarkConfig;
|
|
use crate::constraint_consumer::ConstraintConsumer;
|
|
use crate::cpu::cpu_stark::CpuStark;
|
|
use crate::cross_table_lookup::{verify_cross_table_lookups, CtlCheckVars};
|
|
use crate::keccak::keccak_stark::KeccakStark;
|
|
use crate::keccak_sponge::keccak_sponge_stark::KeccakSpongeStark;
|
|
use crate::logic::LogicStark;
|
|
use crate::memory::memory_stark::MemoryStark;
|
|
use crate::permutation::PermutationCheckVars;
|
|
use crate::proof::{
|
|
AllProof, AllProofChallenges, StarkOpeningSet, StarkProof, StarkProofChallenges,
|
|
};
|
|
use crate::stark::Stark;
|
|
use crate::vanishing_poly::eval_vanishing_poly;
|
|
use crate::vars::StarkEvaluationVars;
|
|
|
|
pub fn verify_proof<F: RichField + Extendable<D>, C: GenericConfig<D, F = F>, const D: usize>(
|
|
all_stark: &AllStark<F, D>,
|
|
all_proof: AllProof<F, C, D>,
|
|
config: &StarkConfig,
|
|
) -> Result<()>
|
|
where
|
|
[(); ArithmeticStark::<F, D>::COLUMNS]:,
|
|
[(); CpuStark::<F, D>::COLUMNS]:,
|
|
[(); KeccakStark::<F, D>::COLUMNS]:,
|
|
[(); KeccakSpongeStark::<F, D>::COLUMNS]:,
|
|
[(); LogicStark::<F, D>::COLUMNS]:,
|
|
[(); MemoryStark::<F, D>::COLUMNS]:,
|
|
{
|
|
let AllProofChallenges {
|
|
stark_challenges,
|
|
ctl_challenges,
|
|
} = all_proof.get_challenges(all_stark, config);
|
|
|
|
let nums_permutation_zs = all_stark.nums_permutation_zs(config);
|
|
|
|
let AllStark {
|
|
arithmetic_stark,
|
|
cpu_stark,
|
|
keccak_stark,
|
|
keccak_sponge_stark,
|
|
logic_stark,
|
|
memory_stark,
|
|
cross_table_lookups,
|
|
} = all_stark;
|
|
|
|
let ctl_vars_per_table = CtlCheckVars::from_proofs(
|
|
&all_proof.stark_proofs,
|
|
cross_table_lookups,
|
|
&ctl_challenges,
|
|
&nums_permutation_zs,
|
|
);
|
|
|
|
verify_stark_proof_with_challenges(
|
|
arithmetic_stark,
|
|
&all_proof.stark_proofs[Table::Arithmetic as usize].proof,
|
|
&stark_challenges[Table::Arithmetic as usize],
|
|
&ctl_vars_per_table[Table::Arithmetic as usize],
|
|
config,
|
|
)?;
|
|
verify_stark_proof_with_challenges(
|
|
cpu_stark,
|
|
&all_proof.stark_proofs[Table::Cpu as usize].proof,
|
|
&stark_challenges[Table::Cpu as usize],
|
|
&ctl_vars_per_table[Table::Cpu as usize],
|
|
config,
|
|
)?;
|
|
verify_stark_proof_with_challenges(
|
|
keccak_stark,
|
|
&all_proof.stark_proofs[Table::Keccak as usize].proof,
|
|
&stark_challenges[Table::Keccak as usize],
|
|
&ctl_vars_per_table[Table::Keccak as usize],
|
|
config,
|
|
)?;
|
|
verify_stark_proof_with_challenges(
|
|
keccak_sponge_stark,
|
|
&all_proof.stark_proofs[Table::KeccakSponge as usize].proof,
|
|
&stark_challenges[Table::KeccakSponge as usize],
|
|
&ctl_vars_per_table[Table::KeccakSponge as usize],
|
|
config,
|
|
)?;
|
|
verify_stark_proof_with_challenges(
|
|
memory_stark,
|
|
&all_proof.stark_proofs[Table::Memory as usize].proof,
|
|
&stark_challenges[Table::Memory as usize],
|
|
&ctl_vars_per_table[Table::Memory as usize],
|
|
config,
|
|
)?;
|
|
verify_stark_proof_with_challenges(
|
|
logic_stark,
|
|
&all_proof.stark_proofs[Table::Logic as usize].proof,
|
|
&stark_challenges[Table::Logic as usize],
|
|
&ctl_vars_per_table[Table::Logic as usize],
|
|
config,
|
|
)?;
|
|
|
|
verify_cross_table_lookups::<F, D>(
|
|
cross_table_lookups,
|
|
all_proof.stark_proofs.map(|p| p.proof.openings.ctl_zs_last),
|
|
config,
|
|
)
|
|
}
|
|
|
|
pub(crate) fn verify_stark_proof_with_challenges<
|
|
F: RichField + Extendable<D>,
|
|
C: GenericConfig<D, F = F>,
|
|
S: Stark<F, D>,
|
|
const D: usize,
|
|
>(
|
|
stark: &S,
|
|
proof: &StarkProof<F, C, D>,
|
|
challenges: &StarkProofChallenges<F, D>,
|
|
ctl_vars: &[CtlCheckVars<F, F::Extension, F::Extension, D>],
|
|
config: &StarkConfig,
|
|
) -> Result<()>
|
|
where
|
|
[(); S::COLUMNS]:,
|
|
{
|
|
log::debug!("Checking proof: {}", type_name::<S>());
|
|
validate_proof_shape(stark, proof, config, ctl_vars.len())?;
|
|
let StarkOpeningSet {
|
|
local_values,
|
|
next_values,
|
|
permutation_ctl_zs,
|
|
permutation_ctl_zs_next,
|
|
ctl_zs_last,
|
|
quotient_polys,
|
|
} = &proof.openings;
|
|
let vars = StarkEvaluationVars {
|
|
local_values: &local_values.to_vec().try_into().unwrap(),
|
|
next_values: &next_values.to_vec().try_into().unwrap(),
|
|
};
|
|
|
|
let degree_bits = proof.recover_degree_bits(config);
|
|
let (l_0, l_last) = eval_l_0_and_l_last(degree_bits, challenges.stark_zeta);
|
|
let last = F::primitive_root_of_unity(degree_bits).inverse();
|
|
let z_last = challenges.stark_zeta - last.into();
|
|
let mut consumer = ConstraintConsumer::<F::Extension>::new(
|
|
challenges
|
|
.stark_alphas
|
|
.iter()
|
|
.map(|&alpha| F::Extension::from_basefield(alpha))
|
|
.collect::<Vec<_>>(),
|
|
z_last,
|
|
l_0,
|
|
l_last,
|
|
);
|
|
let num_permutation_zs = stark.num_permutation_batches(config);
|
|
let permutation_data = stark.uses_permutation_args().then(|| PermutationCheckVars {
|
|
local_zs: permutation_ctl_zs[..num_permutation_zs].to_vec(),
|
|
next_zs: permutation_ctl_zs_next[..num_permutation_zs].to_vec(),
|
|
permutation_challenge_sets: challenges.permutation_challenge_sets.clone().unwrap(),
|
|
});
|
|
eval_vanishing_poly::<F, F::Extension, F::Extension, S, D, D>(
|
|
stark,
|
|
config,
|
|
vars,
|
|
permutation_data,
|
|
ctl_vars,
|
|
&mut consumer,
|
|
);
|
|
let vanishing_polys_zeta = consumer.accumulators();
|
|
|
|
// Check each polynomial identity, of the form `vanishing(x) = Z_H(x) quotient(x)`, at zeta.
|
|
let zeta_pow_deg = challenges.stark_zeta.exp_power_of_2(degree_bits);
|
|
let z_h_zeta = zeta_pow_deg - F::Extension::ONE;
|
|
// `quotient_polys_zeta` holds `num_challenges * quotient_degree_factor` evaluations.
|
|
// Each chunk of `quotient_degree_factor` holds the evaluations of `t_0(zeta),...,t_{quotient_degree_factor-1}(zeta)`
|
|
// where the "real" quotient polynomial is `t(X) = t_0(X) + t_1(X)*X^n + t_2(X)*X^{2n} + ...`.
|
|
// So to reconstruct `t(zeta)` we can compute `reduce_with_powers(chunk, zeta^n)` for each
|
|
// `quotient_degree_factor`-sized chunk of the original evaluations.
|
|
for (i, chunk) in quotient_polys
|
|
.chunks(stark.quotient_degree_factor())
|
|
.enumerate()
|
|
{
|
|
ensure!(
|
|
vanishing_polys_zeta[i] == z_h_zeta * reduce_with_powers(chunk, zeta_pow_deg),
|
|
"Mismatch between evaluation and opening of quotient polynomial"
|
|
);
|
|
}
|
|
|
|
let merkle_caps = vec![
|
|
proof.trace_cap.clone(),
|
|
proof.permutation_ctl_zs_cap.clone(),
|
|
proof.quotient_polys_cap.clone(),
|
|
];
|
|
|
|
verify_fri_proof::<F, C, D>(
|
|
&stark.fri_instance(
|
|
challenges.stark_zeta,
|
|
F::primitive_root_of_unity(degree_bits),
|
|
degree_bits,
|
|
ctl_zs_last.len(),
|
|
config,
|
|
),
|
|
&proof.openings.to_fri_openings(),
|
|
&challenges.fri_challenges,
|
|
&merkle_caps,
|
|
&proof.opening_proof,
|
|
&config.fri_params(degree_bits),
|
|
)?;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn validate_proof_shape<F, C, S, const D: usize>(
|
|
stark: &S,
|
|
proof: &StarkProof<F, C, D>,
|
|
config: &StarkConfig,
|
|
num_ctl_zs: usize,
|
|
) -> anyhow::Result<()>
|
|
where
|
|
F: RichField + Extendable<D>,
|
|
C: GenericConfig<D, F = F>,
|
|
S: Stark<F, D>,
|
|
[(); S::COLUMNS]:,
|
|
{
|
|
let StarkProof {
|
|
trace_cap,
|
|
permutation_ctl_zs_cap,
|
|
quotient_polys_cap,
|
|
openings,
|
|
// The shape of the opening proof will be checked in the FRI verifier (see
|
|
// validate_fri_proof_shape), so we ignore it here.
|
|
opening_proof: _,
|
|
} = proof;
|
|
|
|
let StarkOpeningSet {
|
|
local_values,
|
|
next_values,
|
|
permutation_ctl_zs,
|
|
permutation_ctl_zs_next,
|
|
ctl_zs_last,
|
|
quotient_polys,
|
|
} = openings;
|
|
|
|
let degree_bits = proof.recover_degree_bits(config);
|
|
let fri_params = config.fri_params(degree_bits);
|
|
let cap_height = fri_params.config.cap_height;
|
|
let num_zs = num_ctl_zs + stark.num_permutation_batches(config);
|
|
|
|
ensure!(trace_cap.height() == cap_height);
|
|
ensure!(permutation_ctl_zs_cap.height() == cap_height);
|
|
ensure!(quotient_polys_cap.height() == cap_height);
|
|
|
|
ensure!(local_values.len() == S::COLUMNS);
|
|
ensure!(next_values.len() == S::COLUMNS);
|
|
ensure!(permutation_ctl_zs.len() == num_zs);
|
|
ensure!(permutation_ctl_zs_next.len() == num_zs);
|
|
ensure!(ctl_zs_last.len() == num_ctl_zs);
|
|
ensure!(quotient_polys.len() == stark.num_quotient_polys(config));
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Evaluate the Lagrange polynomials `L_0` and `L_(n-1)` at a point `x`.
|
|
/// `L_0(x) = (x^n - 1)/(n * (x - 1))`
|
|
/// `L_(n-1)(x) = (x^n - 1)/(n * (g * x - 1))`, with `g` the first element of the subgroup.
|
|
fn eval_l_0_and_l_last<F: Field>(log_n: usize, x: F) -> (F, F) {
|
|
let n = F::from_canonical_usize(1 << log_n);
|
|
let g = F::primitive_root_of_unity(log_n);
|
|
let z_x = x.exp_power_of_2(log_n) - F::ONE;
|
|
let invs = F::batch_multiplicative_inverse(&[n * (x - F::ONE), n * (g * x - F::ONE)]);
|
|
|
|
(z_x * invs[0], z_x * invs[1])
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use plonky2::field::goldilocks_field::GoldilocksField;
|
|
use plonky2::field::polynomial::PolynomialValues;
|
|
use plonky2::field::types::Sample;
|
|
|
|
use crate::verifier::eval_l_0_and_l_last;
|
|
|
|
#[test]
|
|
fn test_eval_l_0_and_l_last() {
|
|
type F = GoldilocksField;
|
|
let log_n = 5;
|
|
let n = 1 << log_n;
|
|
|
|
let x = F::rand(); // challenge point
|
|
let expected_l_first_x = PolynomialValues::selector(n, 0).ifft().eval(x);
|
|
let expected_l_last_x = PolynomialValues::selector(n, n - 1).ifft().eval(x);
|
|
|
|
let (l_first_x, l_last_x) = eval_l_0_and_l_last(log_n, x);
|
|
assert_eq!(l_first_x, expected_l_first_x);
|
|
assert_eq!(l_last_x, expected_l_last_x);
|
|
}
|
|
}
|