mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-02 22:03:07 +00:00
# Conflicts: # src/field/extension_field/mod.rs # src/fri/recursive_verifier.rs # src/gadgets/arithmetic.rs # src/gadgets/arithmetic_extension.rs # src/gadgets/hash.rs # src/gadgets/interpolation.rs # src/gadgets/random_access.rs # src/gadgets/sorting.rs # src/gates/arithmetic_u32.rs # src/gates/gate_tree.rs # src/gates/interpolation.rs # src/gates/poseidon.rs # src/gates/poseidon_mds.rs # src/gates/random_access.rs # src/hash/hashing.rs # src/hash/merkle_proofs.rs # src/hash/poseidon.rs # src/iop/challenger.rs # src/iop/generator.rs # src/iop/witness.rs # src/plonk/circuit_data.rs # src/plonk/proof.rs # src/plonk/prover.rs # src/plonk/recursive_verifier.rs # src/util/partial_products.rs # src/util/reducing.rs
361 lines
13 KiB
Rust
361 lines
13 KiB
Rust
use std::marker::PhantomData;
|
|
use std::ops::Range;
|
|
|
|
use crate::field::extension_field::algebra::PolynomialCoeffsAlgebra;
|
|
use crate::field::extension_field::target::ExtensionTarget;
|
|
use crate::field::extension_field::{Extendable, FieldExtension};
|
|
use crate::field::interpolation::interpolant;
|
|
use crate::gadgets::interpolation::InterpolationGate;
|
|
use crate::gadgets::polynomial::PolynomialCoeffsExtAlgebraTarget;
|
|
use crate::gates::gate::Gate;
|
|
use crate::iop::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
|
|
use crate::iop::target::Target;
|
|
use crate::iop::wire::Wire;
|
|
use crate::iop::witness::{PartitionWitness, Witness};
|
|
use crate::plonk::circuit_builder::CircuitBuilder;
|
|
use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
|
|
use crate::polynomial::PolynomialCoeffs;
|
|
|
|
/// Interpolation gate with constraints of degree at most `1<<subgroup_bits`.
|
|
/// `eval_unfiltered_recursively` uses less gates than `LowDegreeInterpolationGate`.
|
|
#[derive(Copy, Clone, Debug)]
|
|
pub(crate) struct HighDegreeInterpolationGate<F: RichField + Extendable<D>, const D: usize> {
|
|
pub subgroup_bits: usize,
|
|
_phantom: PhantomData<F>,
|
|
}
|
|
|
|
impl<F: Extendable<D>, const D: usize> InterpolationGate<F, D>
|
|
for HighDegreeInterpolationGate<F, D>
|
|
{
|
|
fn new(subgroup_bits: usize) -> Self {
|
|
Self {
|
|
subgroup_bits,
|
|
_phantom: PhantomData,
|
|
}
|
|
}
|
|
|
|
fn num_points(&self) -> usize {
|
|
1 << self.subgroup_bits
|
|
}
|
|
}
|
|
|
|
impl<F: RichField + Extendable<D>, const D: usize> HighDegreeInterpolationGate<F, D> {
|
|
/// End of wire indices, exclusive.
|
|
fn end(&self) -> usize {
|
|
self.start_coeffs() + self.num_points() * D
|
|
}
|
|
|
|
/// The domain of the points we're interpolating.
|
|
fn coset(&self, shift: F) -> impl Iterator<Item = F> {
|
|
let g = F::primitive_root_of_unity(self.subgroup_bits);
|
|
let size = 1 << self.subgroup_bits;
|
|
// Speed matters here, so we avoid `cyclic_subgroup_coset_known_order` which allocates.
|
|
g.powers().take(size).map(move |x| x * shift)
|
|
}
|
|
|
|
/// The domain of the points we're interpolating.
|
|
fn coset_ext(&self, shift: F::Extension) -> impl Iterator<Item = F::Extension> {
|
|
let g = F::primitive_root_of_unity(self.subgroup_bits);
|
|
let size = 1 << self.subgroup_bits;
|
|
g.powers().take(size).map(move |x| shift.scalar_mul(x))
|
|
}
|
|
|
|
/// The domain of the points we're interpolating.
|
|
fn coset_ext_recursive(
|
|
&self,
|
|
builder: &mut CircuitBuilder<F, D>,
|
|
shift: ExtensionTarget<D>,
|
|
) -> Vec<ExtensionTarget<D>> {
|
|
let g = F::primitive_root_of_unity(self.subgroup_bits);
|
|
let size = 1 << self.subgroup_bits;
|
|
g.powers()
|
|
.take(size)
|
|
.map(move |x| {
|
|
let subgroup_element = builder.constant(x);
|
|
builder.scalar_mul_ext(subgroup_element, shift)
|
|
})
|
|
.collect()
|
|
}
|
|
}
|
|
|
|
impl<F: Extendable<D>, const D: usize> Gate<F, D>
|
|
for HighDegreeInterpolationGate<F, D>
|
|
{
|
|
fn id(&self) -> String {
|
|
format!("{:?}<D={}>", self, D)
|
|
}
|
|
|
|
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
|
|
let mut constraints = Vec::with_capacity(self.num_constraints());
|
|
|
|
let coeffs = (0..self.num_points())
|
|
.map(|i| vars.get_local_ext_algebra(self.wires_coeff(i)))
|
|
.collect();
|
|
let interpolant = PolynomialCoeffsAlgebra::new(coeffs);
|
|
|
|
let coset = self.coset_ext(vars.local_wires[self.wire_shift()]);
|
|
for (i, point) in coset.into_iter().enumerate() {
|
|
let value = vars.get_local_ext_algebra(self.wires_value(i));
|
|
let computed_value = interpolant.eval_base(point);
|
|
constraints.extend(&(value - computed_value).to_basefield_array());
|
|
}
|
|
|
|
let evaluation_point = vars.get_local_ext_algebra(self.wires_evaluation_point());
|
|
let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
|
|
let computed_evaluation_value = interpolant.eval(evaluation_point);
|
|
constraints.extend(&(evaluation_value - computed_evaluation_value).to_basefield_array());
|
|
|
|
constraints
|
|
}
|
|
|
|
fn eval_unfiltered_base(&self, vars: EvaluationVarsBase<F>) -> Vec<F> {
|
|
let mut constraints = Vec::with_capacity(self.num_constraints());
|
|
|
|
let coeffs = (0..self.num_points())
|
|
.map(|i| vars.get_local_ext(self.wires_coeff(i)))
|
|
.collect();
|
|
let interpolant = PolynomialCoeffs::new(coeffs);
|
|
|
|
let coset = self.coset(vars.local_wires[self.wire_shift()]);
|
|
for (i, point) in coset.into_iter().enumerate() {
|
|
let value = vars.get_local_ext(self.wires_value(i));
|
|
let computed_value = interpolant.eval_base(point);
|
|
constraints.extend(&(value - computed_value).to_basefield_array());
|
|
}
|
|
|
|
let evaluation_point = vars.get_local_ext(self.wires_evaluation_point());
|
|
let evaluation_value = vars.get_local_ext(self.wires_evaluation_value());
|
|
let computed_evaluation_value = interpolant.eval(evaluation_point);
|
|
constraints.extend(&(evaluation_value - computed_evaluation_value).to_basefield_array());
|
|
|
|
constraints
|
|
}
|
|
|
|
fn eval_unfiltered_recursively(
|
|
&self,
|
|
builder: &mut CircuitBuilder<F, D>,
|
|
vars: EvaluationTargets<D>,
|
|
) -> Vec<ExtensionTarget<D>> {
|
|
let mut constraints = Vec::with_capacity(self.num_constraints());
|
|
|
|
let coeffs = (0..self.num_points())
|
|
.map(|i| vars.get_local_ext_algebra(self.wires_coeff(i)))
|
|
.collect();
|
|
let interpolant = PolynomialCoeffsExtAlgebraTarget(coeffs);
|
|
|
|
let coset = self.coset_ext_recursive(builder, vars.local_wires[self.wire_shift()]);
|
|
for (i, point) in coset.into_iter().enumerate() {
|
|
let value = vars.get_local_ext_algebra(self.wires_value(i));
|
|
let computed_value = interpolant.eval_scalar(builder, point);
|
|
constraints.extend(
|
|
&builder
|
|
.sub_ext_algebra(value, computed_value)
|
|
.to_ext_target_array(),
|
|
);
|
|
}
|
|
|
|
let evaluation_point = vars.get_local_ext_algebra(self.wires_evaluation_point());
|
|
let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
|
|
let computed_evaluation_value = interpolant.eval(builder, evaluation_point);
|
|
constraints.extend(
|
|
&builder
|
|
.sub_ext_algebra(evaluation_value, computed_evaluation_value)
|
|
.to_ext_target_array(),
|
|
);
|
|
|
|
constraints
|
|
}
|
|
|
|
fn generators(
|
|
&self,
|
|
gate_index: usize,
|
|
_local_constants: &[F],
|
|
) -> Vec<Box<dyn WitnessGenerator<F>>> {
|
|
let gen = InterpolationGenerator::<F, D> {
|
|
gate_index,
|
|
gate: *self,
|
|
_phantom: PhantomData,
|
|
};
|
|
vec![Box::new(gen.adapter())]
|
|
}
|
|
|
|
fn num_wires(&self) -> usize {
|
|
self.end()
|
|
}
|
|
|
|
fn num_constants(&self) -> usize {
|
|
0
|
|
}
|
|
|
|
fn degree(&self) -> usize {
|
|
// The highest power of x is `num_points - 1`, and then multiplication by the coefficient
|
|
// adds 1.
|
|
self.num_points()
|
|
}
|
|
|
|
fn num_constraints(&self) -> usize {
|
|
// num_points * D constraints to check for consistency between the coefficients and the
|
|
// point-value pairs, plus D constraints for the evaluation value.
|
|
self.num_points() * D + D
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct InterpolationGenerator<F: Extendable<D>, const D: usize> {
|
|
gate_index: usize,
|
|
gate: HighDegreeInterpolationGate<F, D>,
|
|
_phantom: PhantomData<F>,
|
|
}
|
|
|
|
impl<F: Extendable<D>, const D: usize> SimpleGenerator<F> for InterpolationGenerator<F, D> {
|
|
fn dependencies(&self) -> Vec<Target> {
|
|
let local_target = |input| {
|
|
Target::Wire(Wire {
|
|
gate: self.gate_index,
|
|
input,
|
|
})
|
|
};
|
|
|
|
let local_targets = |inputs: Range<usize>| inputs.map(local_target);
|
|
|
|
let num_points = self.gate.num_points();
|
|
let mut deps = Vec::with_capacity(1 + D + num_points * D);
|
|
|
|
deps.push(local_target(self.gate.wire_shift()));
|
|
deps.extend(local_targets(self.gate.wires_evaluation_point()));
|
|
for i in 0..num_points {
|
|
deps.extend(local_targets(self.gate.wires_value(i)));
|
|
}
|
|
deps
|
|
}
|
|
|
|
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
|
|
let local_wire = |input| Wire {
|
|
gate: self.gate_index,
|
|
input,
|
|
};
|
|
|
|
let get_local_wire = |input| witness.get_wire(local_wire(input));
|
|
|
|
let get_local_ext = |wire_range: Range<usize>| {
|
|
debug_assert_eq!(wire_range.len(), D);
|
|
let values = wire_range.map(get_local_wire).collect::<Vec<_>>();
|
|
let arr = values.try_into().unwrap();
|
|
F::Extension::from_basefield_array(arr)
|
|
};
|
|
|
|
// Compute the interpolant.
|
|
let points = self.gate.coset(get_local_wire(self.gate.wire_shift()));
|
|
let points = points
|
|
.into_iter()
|
|
.enumerate()
|
|
.map(|(i, point)| (point.into(), get_local_ext(self.gate.wires_value(i))))
|
|
.collect::<Vec<_>>();
|
|
let interpolant = interpolant(&points);
|
|
|
|
for (i, &coeff) in interpolant.coeffs.iter().enumerate() {
|
|
let wires = self.gate.wires_coeff(i).map(local_wire);
|
|
out_buffer.set_ext_wires(wires, coeff);
|
|
}
|
|
|
|
let evaluation_point = get_local_ext(self.gate.wires_evaluation_point());
|
|
let evaluation_value = interpolant.eval(evaluation_point);
|
|
let evaluation_value_wires = self.gate.wires_evaluation_value().map(local_wire);
|
|
out_buffer.set_ext_wires(evaluation_value_wires, evaluation_value);
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use std::marker::PhantomData;
|
|
|
|
use anyhow::Result;
|
|
|
|
use crate::field::field_types::Field;
|
|
use crate::field::goldilocks_field::GoldilocksField;
|
|
use crate::gadgets::interpolation::InterpolationGate;
|
|
use crate::gates::gate::Gate;
|
|
use crate::gates::gate_testing::{test_eval_fns, test_low_degree};
|
|
use crate::gates::interpolation::HighDegreeInterpolationGate;
|
|
use crate::hash::hash_types::HashOut;
|
|
use crate::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
|
|
use crate::plonk::vars::EvaluationVars;
|
|
use crate::polynomial::PolynomialCoeffs;
|
|
|
|
#[test]
|
|
fn wire_indices() {
|
|
let gate = HighDegreeInterpolationGate::<GoldilocksField, 4> {
|
|
subgroup_bits: 1,
|
|
_phantom: PhantomData,
|
|
};
|
|
|
|
// The exact indices aren't really important, but we want to make sure we don't have any
|
|
// overlaps or gaps.
|
|
assert_eq!(gate.wire_shift(), 0);
|
|
assert_eq!(gate.wires_value(0), 1..5);
|
|
assert_eq!(gate.wires_value(1), 5..9);
|
|
assert_eq!(gate.wires_evaluation_point(), 9..13);
|
|
assert_eq!(gate.wires_evaluation_value(), 13..17);
|
|
assert_eq!(gate.wires_coeff(0), 17..21);
|
|
assert_eq!(gate.wires_coeff(1), 21..25);
|
|
assert_eq!(gate.num_wires(), 25);
|
|
}
|
|
|
|
#[test]
|
|
fn low_degree() {
|
|
test_low_degree::<GoldilocksField, _, 4>(HighDegreeInterpolationGate::new(2));
|
|
}
|
|
|
|
#[test]
|
|
fn eval_fns() -> Result<()> {
|
|
const D: usize = 2;
|
|
type C = PoseidonGoldilocksConfig;
|
|
type F = <C as GenericConfig<D>>::F;
|
|
test_eval_fns::<F, C, _, D>(HighDegreeInterpolationGate::new(2))
|
|
}
|
|
|
|
#[test]
|
|
fn test_gate_constraint() {
|
|
const D: usize = 2;
|
|
type C = PoseidonGoldilocksConfig;
|
|
type F = <C as GenericConfig<D>>::F;
|
|
type FF = <C as GenericConfig<D>>::FE;
|
|
|
|
/// Returns the local wires for an interpolation gate for given coeffs, points and eval point.
|
|
fn get_wires(
|
|
gate: &HighDegreeInterpolationGate<F, D>,
|
|
shift: F,
|
|
coeffs: PolynomialCoeffs<FF>,
|
|
eval_point: FF,
|
|
) -> Vec<FF> {
|
|
let points = gate.coset(shift);
|
|
let mut v = vec![shift];
|
|
for x in points {
|
|
v.extend(coeffs.eval(x.into()).0);
|
|
}
|
|
v.extend(eval_point.0);
|
|
v.extend(coeffs.eval(eval_point).0);
|
|
for i in 0..coeffs.len() {
|
|
v.extend(coeffs.coeffs[i].0);
|
|
}
|
|
v.iter().map(|&x| x.into()).collect::<Vec<_>>()
|
|
}
|
|
|
|
// Get a working row for InterpolationGate.
|
|
let shift = F::rand();
|
|
let coeffs = PolynomialCoeffs::new(vec![FF::rand(), FF::rand()]);
|
|
let eval_point = FF::rand();
|
|
let gate = HighDegreeInterpolationGate::<F, D>::new(1);
|
|
let vars = EvaluationVars {
|
|
local_constants: &[],
|
|
local_wires: &get_wires(&gate, shift, coeffs, eval_point),
|
|
public_inputs_hash: &HashOut::rand(),
|
|
};
|
|
|
|
assert!(
|
|
gate.eval_unfiltered(vars).iter().all(|x| x.is_zero()),
|
|
"Gate constraints are not satisfied."
|
|
);
|
|
}
|
|
}
|