plonky2/src/gadgets/arithmetic.rs
wborgeaud bdbc8b6931 Merge branch 'main' into generic_configuration
# Conflicts:
#	src/field/extension_field/mod.rs
#	src/fri/recursive_verifier.rs
#	src/gadgets/arithmetic.rs
#	src/gadgets/arithmetic_extension.rs
#	src/gadgets/hash.rs
#	src/gadgets/interpolation.rs
#	src/gadgets/random_access.rs
#	src/gadgets/sorting.rs
#	src/gates/arithmetic_u32.rs
#	src/gates/gate_tree.rs
#	src/gates/interpolation.rs
#	src/gates/poseidon.rs
#	src/gates/poseidon_mds.rs
#	src/gates/random_access.rs
#	src/hash/hashing.rs
#	src/hash/merkle_proofs.rs
#	src/hash/poseidon.rs
#	src/iop/challenger.rs
#	src/iop/generator.rs
#	src/iop/witness.rs
#	src/plonk/circuit_data.rs
#	src/plonk/proof.rs
#	src/plonk/prover.rs
#	src/plonk/recursive_verifier.rs
#	src/util/partial_products.rs
#	src/util/reducing.rs
2021-12-16 14:54:38 +01:00

328 lines
11 KiB
Rust

use std::borrow::Borrow;
use crate::field::extension_field::Extendable;
use crate::gates::arithmetic::ArithmeticExtensionGate;
use crate::field::field_types::{PrimeField, RichField};
use crate::gates::arithmetic_base::ArithmeticGate;
use crate::gates::exponentiation::ExponentiationGate;
use crate::iop::target::{BoolTarget, Target};
use crate::plonk::circuit_builder::CircuitBuilder;
impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Computes `-x`.
pub fn neg(&mut self, x: Target) -> Target {
let neg_one = self.neg_one();
self.mul(x, neg_one)
}
/// Computes `x^2`.
pub fn square(&mut self, x: Target) -> Target {
self.mul(x, x)
}
/// Computes `x^3`.
pub fn cube(&mut self, x: Target) -> Target {
self.mul_many(&[x, x, x])
}
/// Computes `const_0 * multiplicand_0 * multiplicand_1 + const_1 * addend`.
pub fn arithmetic(
&mut self,
const_0: F,
const_1: F,
multiplicand_0: Target,
multiplicand_1: Target,
addend: Target,
) -> Target {
// If we're not configured to use the base arithmetic gate, just call arithmetic_extension.
if !self.config.use_base_arithmetic_gate {
let multiplicand_0_ext = self.convert_to_ext(multiplicand_0);
let multiplicand_1_ext = self.convert_to_ext(multiplicand_1);
let addend_ext = self.convert_to_ext(addend);
return self
.arithmetic_extension(
const_0,
const_1,
multiplicand_0_ext,
multiplicand_1_ext,
addend_ext,
)
.0[0];
}
// See if we can determine the result without adding an `ArithmeticGate`.
if let Some(result) =
self.arithmetic_special_cases(const_0, const_1, multiplicand_0, multiplicand_1, addend)
{
return result;
}
// See if we've already computed the same operation.
let operation = BaseArithmeticOperation {
const_0,
const_1,
multiplicand_0,
multiplicand_1,
addend,
};
if let Some(&result) = self.base_arithmetic_results.get(&operation) {
return result;
}
// Otherwise, we must actually perform the operation using an ArithmeticExtensionGate slot.
let result = self.add_base_arithmetic_operation(operation);
self.base_arithmetic_results.insert(operation, result);
result
}
fn add_base_arithmetic_operation(&mut self, operation: BaseArithmeticOperation<F>) -> Target {
let (gate, i) = self.find_base_arithmetic_gate(operation.const_0, operation.const_1);
let wires_multiplicand_0 = Target::wire(gate, ArithmeticGate::wire_ith_multiplicand_0(i));
let wires_multiplicand_1 = Target::wire(gate, ArithmeticGate::wire_ith_multiplicand_1(i));
let wires_addend = Target::wire(gate, ArithmeticGate::wire_ith_addend(i));
self.connect(operation.multiplicand_0, wires_multiplicand_0);
self.connect(operation.multiplicand_1, wires_multiplicand_1);
self.connect(operation.addend, wires_addend);
Target::wire(gate, ArithmeticGate::wire_ith_output(i))
}
/// Checks for special cases where the value of
/// `const_0 * multiplicand_0 * multiplicand_1 + const_1 * addend`
/// can be determined without adding an `ArithmeticGate`.
fn arithmetic_special_cases(
&mut self,
const_0: F,
const_1: F,
multiplicand_0: Target,
multiplicand_1: Target,
addend: Target,
) -> Option<Target> {
let zero = self.zero();
let mul_0_const = self.target_as_constant(multiplicand_0);
let mul_1_const = self.target_as_constant(multiplicand_1);
let addend_const = self.target_as_constant(addend);
let first_term_zero =
const_0 == F::ZERO || multiplicand_0 == zero || multiplicand_1 == zero;
let second_term_zero = const_1 == F::ZERO || addend == zero;
// If both terms are constant, return their (constant) sum.
let first_term_const = if first_term_zero {
Some(F::ZERO)
} else if let (Some(x), Some(y)) = (mul_0_const, mul_1_const) {
Some(x * y * const_0)
} else {
None
};
let second_term_const = if second_term_zero {
Some(F::ZERO)
} else {
addend_const.map(|x| x * const_1)
};
if let (Some(x), Some(y)) = (first_term_const, second_term_const) {
return Some(self.constant(x + y));
}
if first_term_zero && const_1.is_one() {
return Some(addend);
}
if second_term_zero {
if let Some(x) = mul_0_const {
if (x * const_0).is_one() {
return Some(multiplicand_1);
}
}
if let Some(x) = mul_1_const {
if (x * const_0).is_one() {
return Some(multiplicand_0);
}
}
}
None
}
/// Computes `x * y + z`.
pub fn mul_add(&mut self, x: Target, y: Target, z: Target) -> Target {
self.arithmetic(F::ONE, F::ONE, x, y, z)
}
/// Computes `x + C`.
pub fn add_const(&mut self, x: Target, c: F) -> Target {
let c = self.constant(c);
self.add(x, c)
}
/// Computes `C * x`.
pub fn mul_const(&mut self, c: F, x: Target) -> Target {
let c = self.constant(c);
self.mul(c, x)
}
/// Computes `C * x + y`.
pub fn mul_const_add(&mut self, c: F, x: Target, y: Target) -> Target {
let c = self.constant(c);
self.mul_add(c, x, y)
}
/// Computes `x * y - z`.
pub fn mul_sub(&mut self, x: Target, y: Target, z: Target) -> Target {
self.arithmetic(F::ONE, F::NEG_ONE, x, y, z)
}
/// Computes `x + y`.
pub fn add(&mut self, x: Target, y: Target) -> Target {
let one = self.one();
// x + y = 1 * x * 1 + 1 * y
self.arithmetic(F::ONE, F::ONE, x, one, y)
}
/// Add `n` `Target`s.
pub fn add_many(&mut self, terms: &[Target]) -> Target {
terms.iter().fold(self.zero(), |acc, &t| self.add(acc, t))
}
/// Computes `x - y`.
pub fn sub(&mut self, x: Target, y: Target) -> Target {
let one = self.one();
// x - y = 1 * x * 1 + (-1) * y
self.arithmetic(F::ONE, F::NEG_ONE, x, one, y)
}
/// Computes `x * y`.
pub fn mul(&mut self, x: Target, y: Target) -> Target {
// x * y = 1 * x * y + 0 * x
self.arithmetic(F::ONE, F::ZERO, x, y, x)
}
/// Multiply `n` `Target`s.
pub fn mul_many(&mut self, terms: &[Target]) -> Target {
terms
.iter()
.copied()
.reduce(|acc, t| self.mul(acc, t))
.unwrap_or_else(|| self.one())
}
/// Exponentiate `base` to the power of `2^power_log`.
pub fn exp_power_of_2(&mut self, base: Target, power_log: usize) -> Target {
if power_log > self.num_base_arithmetic_ops_per_gate() {
// Cheaper to just use `ExponentiateGate`.
return self.exp_u64(base, 1 << power_log);
}
let mut product = base;
for _ in 0..power_log {
product = self.square(product);
}
product
}
// TODO: Test
/// Exponentiate `base` to the power of `exponent`, given by its little-endian bits.
pub fn exp_from_bits(
&mut self,
base: Target,
exponent_bits: impl IntoIterator<Item = impl Borrow<BoolTarget>>,
) -> Target {
let _false = self._false();
let gate = ExponentiationGate::new_from_config(&self.config);
let num_power_bits = gate.num_power_bits;
let mut exp_bits_vec: Vec<BoolTarget> =
exponent_bits.into_iter().map(|b| *b.borrow()).collect();
while exp_bits_vec.len() < num_power_bits {
exp_bits_vec.push(_false);
}
let gate_index = self.add_gate(gate.clone(), vec![]);
self.connect(base, Target::wire(gate_index, gate.wire_base()));
exp_bits_vec.iter().enumerate().for_each(|(i, bit)| {
self.connect(bit.target, Target::wire(gate_index, gate.wire_power_bit(i)));
});
Target::wire(gate_index, gate.wire_output())
}
// TODO: Test
/// Exponentiate `base` to the power of `exponent`, where `exponent < 2^num_bits`.
pub fn exp(&mut self, base: Target, exponent: Target, num_bits: usize) -> Target {
let exponent_bits = self.split_le(exponent, num_bits);
self.exp_from_bits(base, exponent_bits.iter())
}
/// Like `exp_from_bits` but with a constant base.
pub fn exp_from_bits_const_base(
&mut self,
base: F,
exponent_bits: impl IntoIterator<Item = impl Borrow<BoolTarget>>,
) -> Target {
let base_t = self.constant(base);
let exponent_bits: Vec<_> = exponent_bits.into_iter().map(|b| *b.borrow()).collect();
if exponent_bits.len() > self.num_base_arithmetic_ops_per_gate() {
// Cheaper to just use `ExponentiateGate`.
return self.exp_from_bits(base_t, exponent_bits);
}
let mut product = self.one();
for (i, bit) in exponent_bits.iter().enumerate() {
let pow = 1 << i;
// If the bit is on, we multiply product by base^pow.
// We can arithmetize this as:
// product *= 1 + bit (base^pow - 1)
// product = (base^pow - 1) product bit + product
product = self.arithmetic(
base.exp_u64(pow as u64) - F::ONE,
F::ONE,
product,
bit.target,
product,
)
}
product
}
/// Exponentiate `base` to the power of a known `exponent`.
// TODO: Test
pub fn exp_u64(&mut self, base: Target, mut exponent: u64) -> Target {
let mut exp_bits = Vec::new();
while exponent != 0 {
let bit = (exponent & 1) == 1;
let bit_target = self.constant_bool(bit);
exp_bits.push(bit_target);
exponent >>= 1;
}
self.exp_from_bits(base, exp_bits)
}
/// Computes `x / y`. Results in an unsatisfiable instance if `y = 0`.
pub fn div(&mut self, x: Target, y: Target) -> Target {
let x = self.convert_to_ext(x);
let y = self.convert_to_ext(y);
self.div_extension(x, y).0[0]
}
/// Computes `1 / x`. Results in an unsatisfiable instance if `x = 0`.
pub fn inverse(&mut self, x: Target) -> Target {
let x_ext = self.convert_to_ext(x);
self.inverse_extension(x_ext).0[0]
}
}
/// Represents a base arithmetic operation in the circuit. Used to memoize results.
#[derive(Copy, Clone, Eq, PartialEq, Hash)]
pub(crate) struct BaseArithmeticOperation<F: PrimeField> {
const_0: F,
const_1: F,
multiplicand_0: Target,
multiplicand_1: Target,
addend: Target,
}