mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-02 22:03:07 +00:00
# Conflicts: # src/field/extension_field/mod.rs # src/fri/recursive_verifier.rs # src/gadgets/arithmetic.rs # src/gadgets/arithmetic_extension.rs # src/gadgets/hash.rs # src/gadgets/interpolation.rs # src/gadgets/random_access.rs # src/gadgets/sorting.rs # src/gates/arithmetic_u32.rs # src/gates/gate_tree.rs # src/gates/interpolation.rs # src/gates/poseidon.rs # src/gates/poseidon_mds.rs # src/gates/random_access.rs # src/hash/hashing.rs # src/hash/merkle_proofs.rs # src/hash/poseidon.rs # src/iop/challenger.rs # src/iop/generator.rs # src/iop/witness.rs # src/plonk/circuit_data.rs # src/plonk/proof.rs # src/plonk/prover.rs # src/plonk/recursive_verifier.rs # src/util/partial_products.rs # src/util/reducing.rs
513 lines
20 KiB
Rust
513 lines
20 KiB
Rust
use crate::field::extension_field::target::{flatten_target, ExtensionTarget};
|
|
use crate::field::extension_field::Extendable;
|
|
use crate::field::field_types::{Field, RichField};
|
|
use crate::fri::proof::{FriInitialTreeProofTarget, FriProofTarget, FriQueryRoundTarget};
|
|
use crate::fri::FriConfig;
|
|
use crate::gadgets::interpolation::InterpolationGate;
|
|
use crate::gates::gate::Gate;
|
|
use crate::gates::interpolation::HighDegreeInterpolationGate;
|
|
use crate::gates::low_degree_interpolation::LowDegreeInterpolationGate;
|
|
use crate::gates::random_access::RandomAccessGate;
|
|
use crate::hash::hash_types::MerkleCapTarget;
|
|
use crate::iop::challenger::RecursiveChallenger;
|
|
use crate::iop::target::{BoolTarget, Target};
|
|
use crate::plonk::circuit_builder::CircuitBuilder;
|
|
use crate::plonk::circuit_data::{CircuitConfig, CommonCircuitData};
|
|
use crate::plonk::circuit_data::CommonCircuitData;
|
|
use crate::plonk::config::{AlgebraicConfig, AlgebraicHasher, GenericConfig};
|
|
use crate::plonk::plonk_common::PlonkPolynomials;
|
|
use crate::plonk::proof::OpeningSetTarget;
|
|
use crate::util::reducing::ReducingFactorTarget;
|
|
use crate::util::{log2_strict, reverse_index_bits_in_place};
|
|
use crate::with_context;
|
|
|
|
impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
|
/// Computes P'(x^arity) from {P(x*g^i)}_(i=0..arity), where g is a `arity`-th root of unity
|
|
/// and P' is the FRI reduced polynomial.
|
|
fn compute_evaluation(
|
|
&mut self,
|
|
x: Target,
|
|
x_index_within_coset_bits: &[BoolTarget],
|
|
arity_bits: usize,
|
|
evals: &[ExtensionTarget<D>],
|
|
beta: ExtensionTarget<D>,
|
|
common_data: &CommonCircuitData<F, D>,
|
|
) -> ExtensionTarget<D> {
|
|
let arity = 1 << arity_bits;
|
|
debug_assert_eq!(evals.len(), arity);
|
|
|
|
let g = F::primitive_root_of_unity(arity_bits);
|
|
let g_inv = g.exp_u64((arity as u64) - 1);
|
|
|
|
// The evaluation vector needs to be reordered first.
|
|
let mut evals = evals.to_vec();
|
|
reverse_index_bits_in_place(&mut evals);
|
|
// Want `g^(arity - rev_x_index_within_coset)` as in the out-of-circuit version. Compute it
|
|
// as `(g^-1)^rev_x_index_within_coset`.
|
|
let start = self.exp_from_bits_const_base(g_inv, x_index_within_coset_bits.iter().rev());
|
|
let coset_start = self.mul(start, x);
|
|
|
|
// The answer is gotten by interpolating {(x*g^i, P(x*g^i))} and evaluating at beta.
|
|
// `HighDegreeInterpolationGate` has degree `arity`, so we use the low-degree gate if
|
|
// the arity is too large.
|
|
if arity > common_data.quotient_degree_factor {
|
|
self.interpolate_coset::<LowDegreeInterpolationGate<F, D>>(
|
|
arity_bits,
|
|
coset_start,
|
|
&evals,
|
|
beta,
|
|
)
|
|
} else {
|
|
self.interpolate_coset::<HighDegreeInterpolationGate<F, D>>(
|
|
arity_bits,
|
|
coset_start,
|
|
&evals,
|
|
beta,
|
|
)
|
|
}
|
|
}
|
|
|
|
/// Make sure we have enough wires and routed wires to do the FRI checks efficiently. This check
|
|
/// isn't required -- without it we'd get errors elsewhere in the stack -- but just gives more
|
|
/// helpful errors.
|
|
fn check_recursion_config(
|
|
&self,
|
|
max_fri_arity_bits: usize,
|
|
common_data: &CommonCircuitData<F, D>,
|
|
) {
|
|
let random_access = RandomAccessGate::<F, D>::new_from_config(
|
|
&self.config,
|
|
max_fri_arity_bits.max(self.config.cap_height),
|
|
);
|
|
let (interpolation_wires, interpolation_routed_wires) =
|
|
if 1 << max_fri_arity_bits > common_data.quotient_degree_factor {
|
|
let gate = LowDegreeInterpolationGate::<F, D>::new(max_fri_arity_bits);
|
|
(gate.num_wires(), gate.num_routed_wires())
|
|
} else {
|
|
let gate = HighDegreeInterpolationGate::<F, D>::new(max_fri_arity_bits);
|
|
(gate.num_wires(), gate.num_routed_wires())
|
|
};
|
|
|
|
let min_wires = random_access.num_wires().max(interpolation_wires);
|
|
let min_routed_wires = random_access
|
|
.num_routed_wires()
|
|
.max(interpolation_routed_wires);
|
|
|
|
assert!(
|
|
self.config.num_wires >= min_wires,
|
|
"To efficiently perform FRI checks with an arity of 2^{}, at least {} wires are needed. Consider reducing arity.",
|
|
max_fri_arity_bits,
|
|
min_wires
|
|
);
|
|
|
|
assert!(
|
|
self.config.num_routed_wires >= min_routed_wires,
|
|
"To efficiently perform FRI checks with an arity of 2^{}, at least {} routed wires are needed. Consider reducing arity.",
|
|
max_fri_arity_bits,
|
|
min_routed_wires
|
|
);
|
|
}
|
|
|
|
fn fri_verify_proof_of_work<H: AlgebraicHasher<F>>(
|
|
&mut self,
|
|
proof: &FriProofTarget<D>,
|
|
challenger: &mut RecursiveChallenger<F, H, D>,
|
|
config: &FriConfig,
|
|
) {
|
|
let mut inputs = challenger.get_hash(self).elements.to_vec();
|
|
inputs.push(proof.pow_witness);
|
|
|
|
let hash = self.hash_n_to_m::<H>(inputs, 1, false)[0];
|
|
self.assert_leading_zeros(
|
|
hash,
|
|
config.proof_of_work_bits + (64 - F::order().bits()) as u32,
|
|
);
|
|
}
|
|
|
|
pub fn verify_fri_proof<C: AlgebraicConfig<D, F = F>>(
|
|
&mut self,
|
|
// Openings of the PLONK polynomials.
|
|
os: &OpeningSetTarget<D>,
|
|
// Point at which the PLONK polynomials are opened.
|
|
zeta: ExtensionTarget<D>,
|
|
initial_merkle_caps: &[MerkleCapTarget],
|
|
proof: &FriProofTarget<D>,
|
|
challenger: &mut RecursiveChallenger<F, C::Hasher, D>,
|
|
common_data: &CommonCircuitData<F, C, D>,
|
|
) {
|
|
let config = &common_data.config;
|
|
|
|
if let Some(max_arity_bits) = common_data.fri_params.max_arity_bits() {
|
|
self.check_recursion_config(max_arity_bits, common_data);
|
|
}
|
|
|
|
debug_assert_eq!(
|
|
common_data.final_poly_len(),
|
|
proof.final_poly.len(),
|
|
"Final polynomial has wrong degree."
|
|
);
|
|
|
|
// Size of the LDE domain.
|
|
let n = common_data.lde_size();
|
|
|
|
challenger.observe_opening_set(os);
|
|
|
|
// Scaling factor to combine polynomials.
|
|
let alpha = challenger.get_extension_challenge(self);
|
|
|
|
let betas = with_context!(
|
|
self,
|
|
"recover the random betas used in the FRI reductions.",
|
|
proof
|
|
.commit_phase_merkle_caps
|
|
.iter()
|
|
.map(|cap| {
|
|
challenger.observe_cap(cap);
|
|
challenger.get_extension_challenge(self)
|
|
})
|
|
.collect::<Vec<_>>()
|
|
);
|
|
challenger.observe_extension_elements(&proof.final_poly.0);
|
|
|
|
with_context!(
|
|
self,
|
|
"check PoW",
|
|
self.fri_verify_proof_of_work::<C::Hasher>(proof, challenger, &config.fri_config)
|
|
);
|
|
|
|
// Check that parameters are coherent.
|
|
debug_assert_eq!(
|
|
config.fri_config.num_query_rounds,
|
|
proof.query_round_proofs.len(),
|
|
"Number of query rounds does not match config."
|
|
);
|
|
|
|
let precomputed_reduced_evals = with_context!(
|
|
self,
|
|
"precompute reduced evaluations",
|
|
PrecomputedReducedEvalsTarget::from_os_and_alpha(
|
|
os,
|
|
alpha,
|
|
common_data.degree_bits,
|
|
zeta,
|
|
self
|
|
)
|
|
);
|
|
|
|
for (i, round_proof) in proof.query_round_proofs.iter().enumerate() {
|
|
// To minimize noise in our logs, we will only record a context for a single FRI query.
|
|
// The very first query will have some extra gates due to constants being registered, so
|
|
// the second query is a better representative.
|
|
let level = if i == 1 {
|
|
log::Level::Debug
|
|
} else {
|
|
log::Level::Trace
|
|
};
|
|
|
|
let num_queries = proof.query_round_proofs.len();
|
|
with_context!(
|
|
self,
|
|
level,
|
|
&format!("verify one (of {}) query rounds", num_queries),
|
|
self.fri_verifier_query_round(
|
|
zeta,
|
|
alpha,
|
|
precomputed_reduced_evals,
|
|
initial_merkle_caps,
|
|
proof,
|
|
challenger,
|
|
n,
|
|
&betas,
|
|
round_proof,
|
|
common_data,
|
|
)
|
|
);
|
|
}
|
|
}
|
|
|
|
fn fri_verify_initial_proof<H: AlgebraicHasher<F>>(
|
|
&mut self,
|
|
x_index_bits: &[BoolTarget],
|
|
proof: &FriInitialTreeProofTarget,
|
|
initial_merkle_caps: &[MerkleCapTarget],
|
|
cap_index: Target,
|
|
) {
|
|
for (i, ((evals, merkle_proof), cap)) in proof
|
|
.evals_proofs
|
|
.iter()
|
|
.zip(initial_merkle_caps)
|
|
.enumerate()
|
|
{
|
|
with_context!(
|
|
self,
|
|
&format!("verify {}'th initial Merkle proof", i),
|
|
self.verify_merkle_proof_with_cap_index::<H>(
|
|
evals.clone(),
|
|
x_index_bits,
|
|
cap_index,
|
|
cap,
|
|
merkle_proof
|
|
)
|
|
);
|
|
}
|
|
}
|
|
|
|
fn fri_combine_initial<C: GenericConfig<D, F = F>>(
|
|
&mut self,
|
|
proof: &FriInitialTreeProofTarget,
|
|
alpha: ExtensionTarget<D>,
|
|
subgroup_x: Target,
|
|
vanish_zeta: ExtensionTarget<D>,
|
|
precomputed_reduced_evals: PrecomputedReducedEvalsTarget<D>,
|
|
common_data: &CommonCircuitData<F, C, D>,
|
|
) -> ExtensionTarget<D> {
|
|
assert!(D > 1, "Not implemented for D=1.");
|
|
let config = &common_data.config;
|
|
let degree_log = common_data.degree_bits;
|
|
debug_assert_eq!(
|
|
degree_log,
|
|
common_data.config.cap_height + proof.evals_proofs[0].1.siblings.len()
|
|
- config.rate_bits
|
|
);
|
|
let subgroup_x = self.convert_to_ext(subgroup_x);
|
|
let mut alpha = ReducingFactorTarget::new(alpha);
|
|
let mut sum = self.zero_extension();
|
|
|
|
// We will add three terms to `sum`:
|
|
// - one for polynomials opened at `x` only
|
|
// - one for polynomials opened at `x` and `g x`
|
|
|
|
// Polynomials opened at `x`, i.e., the constants-sigmas, wires, quotient and partial products polynomials.
|
|
let single_evals = [
|
|
PlonkPolynomials::CONSTANTS_SIGMAS,
|
|
PlonkPolynomials::WIRES,
|
|
PlonkPolynomials::QUOTIENT,
|
|
]
|
|
.iter()
|
|
.flat_map(|&p| proof.unsalted_evals(p, config.zero_knowledge))
|
|
.chain(
|
|
&proof.unsalted_evals(PlonkPolynomials::ZS_PARTIAL_PRODUCTS, config.zero_knowledge)
|
|
[common_data.partial_products_range()],
|
|
)
|
|
.copied()
|
|
.collect::<Vec<_>>();
|
|
let single_composition_eval = alpha.reduce_base(&single_evals, self);
|
|
let single_numerator =
|
|
self.sub_extension(single_composition_eval, precomputed_reduced_evals.single);
|
|
sum = self.div_add_extension(single_numerator, vanish_zeta, sum);
|
|
alpha.reset();
|
|
|
|
// Polynomials opened at `x` and `g x`, i.e., the Zs polynomials.
|
|
let zs_evals = proof
|
|
.unsalted_evals(PlonkPolynomials::ZS_PARTIAL_PRODUCTS, config.zero_knowledge)
|
|
.iter()
|
|
.take(common_data.zs_range().end)
|
|
.copied()
|
|
.collect::<Vec<_>>();
|
|
let zs_composition_eval = alpha.reduce_base(&zs_evals, self);
|
|
|
|
let interpol_val = self.mul_add_extension(
|
|
vanish_zeta,
|
|
precomputed_reduced_evals.slope,
|
|
precomputed_reduced_evals.zs,
|
|
);
|
|
let zs_numerator = self.sub_extension(zs_composition_eval, interpol_val);
|
|
let vanish_zeta_right =
|
|
self.sub_extension(subgroup_x, precomputed_reduced_evals.zeta_right);
|
|
sum = alpha.shift(sum, self);
|
|
let zs_denominator = self.mul_extension(vanish_zeta, vanish_zeta_right);
|
|
sum = self.div_add_extension(zs_numerator, zs_denominator, sum);
|
|
|
|
sum
|
|
}
|
|
|
|
fn fri_verifier_query_round<C: AlgebraicConfig<D, F = F>>(
|
|
&mut self,
|
|
zeta: ExtensionTarget<D>,
|
|
alpha: ExtensionTarget<D>,
|
|
precomputed_reduced_evals: PrecomputedReducedEvalsTarget<D>,
|
|
initial_merkle_caps: &[MerkleCapTarget],
|
|
proof: &FriProofTarget<D>,
|
|
challenger: &mut RecursiveChallenger<F, C::Hasher, D>,
|
|
n: usize,
|
|
betas: &[ExtensionTarget<D>],
|
|
round_proof: &FriQueryRoundTarget<D>,
|
|
common_data: &CommonCircuitData<F, C, D>,
|
|
) {
|
|
let n_log = log2_strict(n);
|
|
|
|
// Note that this `low_bits` decomposition permits non-canonical binary encodings. Here we
|
|
// verify that this has a negligible impact on soundness error.
|
|
Self::assert_noncanonical_indices_ok(&common_data.config);
|
|
let x_index = challenger.get_challenge(self);
|
|
let mut x_index_bits = self.low_bits(x_index, n_log, F::BITS);
|
|
|
|
let cap_index =
|
|
self.le_sum(x_index_bits[x_index_bits.len() - common_data.config.cap_height..].iter());
|
|
with_context!(
|
|
self,
|
|
"check FRI initial proof",
|
|
self.fri_verify_initial_proof::<C::Hasher>(
|
|
&x_index_bits,
|
|
&round_proof.initial_trees_proof,
|
|
initial_merkle_caps,
|
|
cap_index
|
|
)
|
|
);
|
|
|
|
// `subgroup_x` is `subgroup[x_index]`, i.e., the actual field element in the domain.
|
|
let (mut subgroup_x, vanish_zeta) = with_context!(self, "compute x from its index", {
|
|
let g = self.constant(F::coset_shift());
|
|
let phi = F::primitive_root_of_unity(n_log);
|
|
let phi = self.exp_from_bits_const_base(phi, x_index_bits.iter().rev());
|
|
let g_ext = self.convert_to_ext(g);
|
|
let phi_ext = self.convert_to_ext(phi);
|
|
// `subgroup_x = g*phi, vanish_zeta = g*phi - zeta`
|
|
let subgroup_x = self.mul(g, phi);
|
|
let vanish_zeta = self.mul_sub_extension(g_ext, phi_ext, zeta);
|
|
(subgroup_x, vanish_zeta)
|
|
});
|
|
|
|
// old_eval is the last derived evaluation; it will be checked for consistency with its
|
|
// committed "parent" value in the next iteration.
|
|
let mut old_eval = with_context!(
|
|
self,
|
|
"combine initial oracles",
|
|
self.fri_combine_initial(
|
|
&round_proof.initial_trees_proof,
|
|
alpha,
|
|
subgroup_x,
|
|
vanish_zeta,
|
|
precomputed_reduced_evals,
|
|
common_data,
|
|
)
|
|
);
|
|
|
|
for (i, &arity_bits) in common_data
|
|
.fri_params
|
|
.reduction_arity_bits
|
|
.iter()
|
|
.enumerate()
|
|
{
|
|
let evals = &round_proof.steps[i].evals;
|
|
|
|
// Split x_index into the index of the coset x is in, and the index of x within that coset.
|
|
let coset_index_bits = x_index_bits[arity_bits..].to_vec();
|
|
let x_index_within_coset_bits = &x_index_bits[..arity_bits];
|
|
let x_index_within_coset = self.le_sum(x_index_within_coset_bits.iter());
|
|
|
|
// Check consistency with our old evaluation from the previous round.
|
|
self.random_access_extension(x_index_within_coset, old_eval, evals.clone());
|
|
|
|
// Infer P(y) from {P(x)}_{x^arity=y}.
|
|
old_eval = with_context!(
|
|
self,
|
|
"infer evaluation using interpolation",
|
|
self.compute_evaluation(
|
|
subgroup_x,
|
|
x_index_within_coset_bits,
|
|
arity_bits,
|
|
evals,
|
|
betas[i],
|
|
common_data
|
|
)
|
|
);
|
|
|
|
with_context!(
|
|
self,
|
|
"verify FRI round Merkle proof.",
|
|
self.verify_merkle_proof_with_cap_index::<C::Hasher>(
|
|
flatten_target(evals),
|
|
&coset_index_bits,
|
|
cap_index,
|
|
&proof.commit_phase_merkle_caps[i],
|
|
&round_proof.steps[i].merkle_proof,
|
|
)
|
|
);
|
|
|
|
// Update the point x to x^arity.
|
|
subgroup_x = self.exp_power_of_2(subgroup_x, arity_bits);
|
|
|
|
x_index_bits = coset_index_bits;
|
|
}
|
|
|
|
// Final check of FRI. After all the reductions, we check that the final polynomial is equal
|
|
// to the one sent by the prover.
|
|
let eval = with_context!(
|
|
self,
|
|
&format!(
|
|
"evaluate final polynomial of length {}",
|
|
proof.final_poly.len()
|
|
),
|
|
proof.final_poly.eval_scalar(self, subgroup_x)
|
|
);
|
|
self.connect_extension(eval, old_eval);
|
|
}
|
|
|
|
/// We decompose FRI query indices into bits without verifying that the decomposition given by
|
|
/// the prover is the canonical one. In particular, if `x_index < 2^field_bits - p`, then the
|
|
/// prover could supply the binary encoding of either `x_index` or `x_index + p`, since the are
|
|
/// congruent mod `p`. However, this only occurs with probability
|
|
/// p_ambiguous = (2^field_bits - p) / p
|
|
/// which is small for the field that we use in practice.
|
|
///
|
|
/// In particular, the soundness error of one FRI query is roughly the codeword rate, which
|
|
/// is much larger than this ambiguous-element probability given any reasonable parameters.
|
|
/// Thus ambiguous elements contribute a negligible amount to soundness error.
|
|
///
|
|
/// Here we compare the probabilities as a sanity check, to verify the claim above.
|
|
fn assert_noncanonical_indices_ok(config: &CircuitConfig) {
|
|
let num_ambiguous_elems = u64::MAX - F::ORDER + 1;
|
|
let query_error = config.rate();
|
|
let p_ambiguous = (num_ambiguous_elems as f64) / (F::ORDER as f64);
|
|
assert!(p_ambiguous < query_error * 1e-5,
|
|
"A non-negligible portion of field elements are in the range that permits non-canonical encodings. Need to do more analysis or enforce canonical encodings.");
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone)]
|
|
struct PrecomputedReducedEvalsTarget<const D: usize> {
|
|
pub single: ExtensionTarget<D>,
|
|
pub zs: ExtensionTarget<D>,
|
|
/// Slope of the line from `(zeta, zs)` to `(zeta_right, zs_right)`.
|
|
pub slope: ExtensionTarget<D>,
|
|
pub zeta_right: ExtensionTarget<D>,
|
|
}
|
|
|
|
impl<const D: usize> PrecomputedReducedEvalsTarget<D> {
|
|
fn from_os_and_alpha<F: RichField + Extendable<D>>(
|
|
os: &OpeningSetTarget<D>,
|
|
alpha: ExtensionTarget<D>,
|
|
degree_log: usize,
|
|
zeta: ExtensionTarget<D>,
|
|
builder: &mut CircuitBuilder<F, D>,
|
|
) -> Self {
|
|
let mut alpha = ReducingFactorTarget::new(alpha);
|
|
let single = alpha.reduce(
|
|
&os.constants
|
|
.iter()
|
|
.chain(&os.plonk_sigmas)
|
|
.chain(&os.wires)
|
|
.chain(&os.quotient_polys)
|
|
.chain(&os.partial_products)
|
|
.copied()
|
|
.collect::<Vec<_>>(),
|
|
builder,
|
|
);
|
|
let zs = alpha.reduce(&os.plonk_zs, builder);
|
|
let zs_right = alpha.reduce(&os.plonk_zs_right, builder);
|
|
|
|
let g = builder.constant_extension(F::Extension::primitive_root_of_unity(degree_log));
|
|
let zeta_right = builder.mul_extension(g, zeta);
|
|
let numerator = builder.sub_extension(zs_right, zs);
|
|
let denominator = builder.sub_extension(zeta_right, zeta);
|
|
|
|
Self {
|
|
single,
|
|
zs,
|
|
slope: builder.div_extension(numerator, denominator),
|
|
zeta_right,
|
|
}
|
|
}
|
|
}
|