mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-03 14:23:07 +00:00
167 lines
7.4 KiB
Rust
167 lines
7.4 KiB
Rust
use plonky2::field::extension::Extendable;
|
|
use plonky2::field::packed::PackedField;
|
|
use plonky2::field::types::Field;
|
|
use plonky2::hash::hash_types::RichField;
|
|
use plonky2::iop::ext_target::ExtensionTarget;
|
|
|
|
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
|
|
use crate::cpu::columns::{CpuColumnsView, COL_MAP};
|
|
use crate::cpu::kernel::aggregator::KERNEL;
|
|
|
|
const NATIVE_INSTRUCTIONS: [usize; 12] = [
|
|
COL_MAP.op.binary_op,
|
|
COL_MAP.op.ternary_op,
|
|
COL_MAP.op.fp254_op,
|
|
COL_MAP.op.eq_iszero,
|
|
COL_MAP.op.logic_op,
|
|
COL_MAP.op.not_pop,
|
|
COL_MAP.op.shift,
|
|
COL_MAP.op.jumpdest_keccak_general,
|
|
// Not PROVER_INPUT: it is dealt with manually below.
|
|
// not JUMPS (possible need to jump)
|
|
COL_MAP.op.pc_push0,
|
|
// not PUSH (need to increment by more than 1)
|
|
COL_MAP.op.dup_swap,
|
|
COL_MAP.op.context_op,
|
|
// not EXIT_KERNEL (performs a jump)
|
|
COL_MAP.op.m_op_general,
|
|
// not SYSCALL (performs a jump)
|
|
// not exceptions (also jump)
|
|
];
|
|
|
|
/// Returns `halt`'s program counter.
|
|
pub(crate) fn get_halt_pc<F: Field>() -> F {
|
|
let halt_pc = KERNEL.global_labels["halt"];
|
|
F::from_canonical_usize(halt_pc)
|
|
}
|
|
|
|
/// Returns `main`'s program counter.
|
|
pub(crate) fn get_start_pc<F: Field>() -> F {
|
|
let start_pc = KERNEL.global_labels["main"];
|
|
|
|
F::from_canonical_usize(start_pc)
|
|
}
|
|
|
|
/// Evaluates the constraints related to the flow of instructions.
|
|
pub(crate) fn eval_packed_generic<P: PackedField>(
|
|
lv: &CpuColumnsView<P>,
|
|
nv: &CpuColumnsView<P>,
|
|
yield_constr: &mut ConstraintConsumer<P>,
|
|
) {
|
|
let is_cpu_cycle: P = COL_MAP.op.iter().map(|&col_i| lv[col_i]).sum();
|
|
let is_cpu_cycle_next: P = COL_MAP.op.iter().map(|&col_i| nv[col_i]).sum();
|
|
|
|
let next_halt_state = P::ONES - is_cpu_cycle_next;
|
|
|
|
// Once we start executing instructions, then we continue until the end of the table
|
|
// or we reach dummy padding rows. This, along with the constraints on the first row,
|
|
// enforces that operation flags and the halt flag are mutually exclusive over the entire
|
|
// CPU trace.
|
|
yield_constr
|
|
.constraint_transition(is_cpu_cycle * (is_cpu_cycle_next + next_halt_state - P::ONES));
|
|
|
|
// If a row is a CPU cycle and executing a native instruction (implemented as a table row; not
|
|
// microcoded) then the program counter is incremented by 1 to obtain the next row's program
|
|
// counter. Also, the next row has the same kernel flag.
|
|
let is_native_instruction: P = NATIVE_INSTRUCTIONS.iter().map(|&col_i| lv[col_i]).sum();
|
|
yield_constr.constraint_transition(
|
|
is_native_instruction * (lv.program_counter - nv.program_counter + P::ONES),
|
|
);
|
|
yield_constr
|
|
.constraint_transition(is_native_instruction * (lv.is_kernel_mode - nv.is_kernel_mode));
|
|
|
|
// Apply the same checks as before, for PROVER_INPUT.
|
|
let is_prover_input: P = lv.op.push_prover_input * (lv.opcode_bits[5] - P::ONES);
|
|
yield_constr.constraint_transition(
|
|
is_prover_input * (lv.program_counter - nv.program_counter + P::ONES),
|
|
);
|
|
yield_constr.constraint_transition(is_prover_input * (lv.is_kernel_mode - nv.is_kernel_mode));
|
|
|
|
// If a non-CPU cycle row is followed by a CPU cycle row, then:
|
|
// - the `program_counter` of the CPU cycle row is `main` (the entry point of our kernel),
|
|
// - execution is in kernel mode, and
|
|
// - the stack is empty.
|
|
let is_last_noncpu_cycle = (is_cpu_cycle - P::ONES) * is_cpu_cycle_next;
|
|
let pc_diff = nv.program_counter - get_start_pc::<P::Scalar>();
|
|
yield_constr.constraint_transition(is_last_noncpu_cycle * pc_diff);
|
|
yield_constr.constraint_transition(is_last_noncpu_cycle * (nv.is_kernel_mode - P::ONES));
|
|
yield_constr.constraint_transition(is_last_noncpu_cycle * nv.stack_len);
|
|
}
|
|
|
|
/// Circuit version of `eval_packed`.
|
|
/// Evaluates the constraints related to the flow of instructions.
|
|
pub(crate) fn eval_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
|
|
builder: &mut plonky2::plonk::circuit_builder::CircuitBuilder<F, D>,
|
|
lv: &CpuColumnsView<ExtensionTarget<D>>,
|
|
nv: &CpuColumnsView<ExtensionTarget<D>>,
|
|
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
|
|
) {
|
|
let one = builder.one_extension();
|
|
|
|
let is_cpu_cycle = builder.add_many_extension(COL_MAP.op.iter().map(|&col_i| lv[col_i]));
|
|
let is_cpu_cycle_next = builder.add_many_extension(COL_MAP.op.iter().map(|&col_i| nv[col_i]));
|
|
|
|
let next_halt_state = builder.sub_extension(one, is_cpu_cycle_next);
|
|
|
|
// Once we start executing instructions, then we continue until the end of the table
|
|
// or we reach dummy padding rows. This, along with the constraints on the first row,
|
|
// enforces that operation flags and the halt flag are mutually exclusive over the entire
|
|
// CPU trace.
|
|
{
|
|
let constr = builder.add_extension(is_cpu_cycle_next, next_halt_state);
|
|
let constr = builder.mul_sub_extension(is_cpu_cycle, constr, is_cpu_cycle);
|
|
yield_constr.constraint_transition(builder, constr);
|
|
}
|
|
|
|
// If a row is a CPU cycle and executing a native instruction (implemented as a table row; not
|
|
// microcoded) then the program counter is incremented by 1 to obtain the next row's program
|
|
// counter. Also, the next row has the same kernel flag.
|
|
{
|
|
let filter = builder.add_many_extension(NATIVE_INSTRUCTIONS.iter().map(|&col_i| lv[col_i]));
|
|
let pc_diff = builder.sub_extension(lv.program_counter, nv.program_counter);
|
|
let pc_constr = builder.mul_add_extension(filter, pc_diff, filter);
|
|
yield_constr.constraint_transition(builder, pc_constr);
|
|
let kernel_diff = builder.sub_extension(lv.is_kernel_mode, nv.is_kernel_mode);
|
|
let kernel_constr = builder.mul_extension(filter, kernel_diff);
|
|
yield_constr.constraint_transition(builder, kernel_constr);
|
|
|
|
// Same constraints as before, for PROVER_INPUT.
|
|
let is_prover_input = builder.mul_sub_extension(
|
|
lv.op.push_prover_input,
|
|
lv.opcode_bits[5],
|
|
lv.op.push_prover_input,
|
|
);
|
|
let pc_constr = builder.mul_add_extension(is_prover_input, pc_diff, is_prover_input);
|
|
yield_constr.constraint_transition(builder, pc_constr);
|
|
let kernel_constr = builder.mul_extension(is_prover_input, kernel_diff);
|
|
yield_constr.constraint_transition(builder, kernel_constr);
|
|
}
|
|
|
|
// If a non-CPU cycle row is followed by a CPU cycle row, then:
|
|
// - the `program_counter` of the CPU cycle row is `main` (the entry point of our kernel),
|
|
// - execution is in kernel mode, and
|
|
// - the stack is empty.
|
|
{
|
|
let is_last_noncpu_cycle =
|
|
builder.mul_sub_extension(is_cpu_cycle, is_cpu_cycle_next, is_cpu_cycle_next);
|
|
|
|
// Start at `main`.
|
|
let main = builder.constant_extension(get_start_pc::<F>().into());
|
|
let pc_diff = builder.sub_extension(nv.program_counter, main);
|
|
let pc_constr = builder.mul_extension(is_last_noncpu_cycle, pc_diff);
|
|
yield_constr.constraint_transition(builder, pc_constr);
|
|
|
|
// Start in kernel mode
|
|
let kernel_constr = builder.mul_sub_extension(
|
|
is_last_noncpu_cycle,
|
|
nv.is_kernel_mode,
|
|
is_last_noncpu_cycle,
|
|
);
|
|
yield_constr.constraint_transition(builder, kernel_constr);
|
|
|
|
// Start with empty stack
|
|
let kernel_constr = builder.mul_extension(is_last_noncpu_cycle, nv.stack_len);
|
|
yield_constr.constraint_transition(builder, kernel_constr);
|
|
}
|
|
}
|