plonky2/evm/src/keccak_sponge/keccak_sponge_stark.rs
2023-09-22 10:14:47 -04:00

769 lines
30 KiB
Rust

use std::borrow::Borrow;
use std::iter::{once, repeat};
use std::marker::PhantomData;
use std::mem::size_of;
use itertools::Itertools;
use plonky2::field::extension::{Extendable, FieldExtension};
use plonky2::field::packed::PackedField;
use plonky2::field::polynomial::PolynomialValues;
use plonky2::field::types::Field;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::ext_target::ExtensionTarget;
use plonky2::timed;
use plonky2::util::timing::TimingTree;
use plonky2_util::ceil_div_usize;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::cpu::kernel::keccak_util::keccakf_u32s;
use crate::cross_table_lookup::Column;
use crate::evaluation_frame::{StarkEvaluationFrame, StarkFrame};
use crate::keccak_sponge::columns::*;
use crate::stark::Stark;
use crate::util::trace_rows_to_poly_values;
use crate::witness::memory::MemoryAddress;
pub(crate) fn ctl_looked_data<F: Field>() -> Vec<Column<F>> {
let cols = KECCAK_SPONGE_COL_MAP;
let mut outputs = Vec::with_capacity(8);
for i in (0..8).rev() {
let cur_col = Column::linear_combination(
cols.updated_digest_state_bytes[i * 4..(i + 1) * 4]
.iter()
.enumerate()
.map(|(j, &c)| (c, F::from_canonical_u64(1 << (24 - 8 * j)))),
);
outputs.push(cur_col);
}
Column::singles([
cols.context,
cols.segment,
cols.virt,
cols.len,
cols.timestamp,
])
.chain(outputs)
.collect()
}
pub(crate) fn ctl_looking_keccak<F: Field>() -> Vec<Column<F>> {
let cols = KECCAK_SPONGE_COL_MAP;
let mut res: Vec<_> = Column::singles(
[
cols.xored_rate_u32s.as_slice(),
&cols.original_capacity_u32s,
]
.concat(),
)
.collect();
// We recover the 32-bit digest limbs from their corresponding bytes,
// and then append them to the rest of the updated state limbs.
let digest_u32s = cols.updated_digest_state_bytes.chunks_exact(4).map(|c| {
Column::linear_combination(
c.iter()
.enumerate()
.map(|(i, &b)| (b, F::from_canonical_usize(1 << (8 * i)))),
)
});
res.extend(digest_u32s);
res.extend(Column::singles(&cols.partial_updated_state_u32s));
res
}
pub(crate) fn ctl_looking_memory<F: Field>(i: usize) -> Vec<Column<F>> {
let cols = KECCAK_SPONGE_COL_MAP;
let mut res = vec![Column::constant(F::ONE)]; // is_read
res.extend(Column::singles([cols.context, cols.segment]));
// The address of the byte being read is `virt + already_absorbed_bytes + i`.
res.push(Column::linear_combination_with_constant(
[(cols.virt, F::ONE), (cols.already_absorbed_bytes, F::ONE)],
F::from_canonical_usize(i),
));
// The i'th input byte being read.
res.push(Column::single(cols.block_bytes[i]));
// Since we're reading a single byte, the higher limbs must be zero.
res.extend((1..8).map(|_| Column::zero()));
res.push(Column::single(cols.timestamp));
assert_eq!(
res.len(),
crate::memory::memory_stark::ctl_data::<F>().len()
);
res
}
pub(crate) fn num_logic_ctls() -> usize {
const U8S_PER_CTL: usize = 32;
ceil_div_usize(KECCAK_RATE_BYTES, U8S_PER_CTL)
}
/// CTL for performing the `i`th logic CTL. Since we need to do 136 byte XORs, and the logic CTL can
/// XOR 32 bytes per CTL, there are 5 such CTLs.
pub(crate) fn ctl_looking_logic<F: Field>(i: usize) -> Vec<Column<F>> {
const U32S_PER_CTL: usize = 8;
const U8S_PER_CTL: usize = 32;
debug_assert!(i < num_logic_ctls());
let cols = KECCAK_SPONGE_COL_MAP;
let mut res = vec![
Column::constant(F::from_canonical_u8(0x18)), // is_xor
];
// Input 0 contains some of the sponge's original rate chunks. If this is the last CTL, we won't
// need to use all of the CTL's inputs, so we will pass some zeros.
res.extend(
Column::singles(&cols.original_rate_u32s[i * U32S_PER_CTL..])
.chain(repeat(Column::zero()))
.take(U32S_PER_CTL),
);
// Input 1 contains some of block's chunks. Again, for the last CTL it will include some zeros.
res.extend(
cols.block_bytes[i * U8S_PER_CTL..]
.chunks(size_of::<u32>())
.map(|chunk| Column::le_bytes(chunk))
.chain(repeat(Column::zero()))
.take(U32S_PER_CTL),
);
// The output contains the XOR'd rate part.
res.extend(
Column::singles(&cols.xored_rate_u32s[i * U32S_PER_CTL..])
.chain(repeat(Column::zero()))
.take(U32S_PER_CTL),
);
res
}
pub(crate) fn ctl_looked_filter<F: Field>() -> Column<F> {
// The CPU table is only interested in our final-block rows, since those contain the final
// sponge output.
Column::sum(KECCAK_SPONGE_COL_MAP.is_final_input_len)
}
/// CTL filter for reading the `i`th byte of input from memory.
pub(crate) fn ctl_looking_memory_filter<F: Field>(i: usize) -> Column<F> {
// We perform the `i`th read if either
// - this is a full input block, or
// - this is a final block of length `i` or greater
let cols = KECCAK_SPONGE_COL_MAP;
if i == KECCAK_RATE_BYTES - 1 {
Column::single(cols.is_full_input_block)
} else {
Column::sum(once(&cols.is_full_input_block).chain(&cols.is_final_input_len[i + 1..]))
}
}
/// CTL filter for looking at XORs in the logic table.
pub(crate) fn ctl_looking_logic_filter<F: Field>() -> Column<F> {
let cols = KECCAK_SPONGE_COL_MAP;
Column::sum(once(&cols.is_full_input_block).chain(&cols.is_final_input_len))
}
pub(crate) fn ctl_looking_keccak_filter<F: Field>() -> Column<F> {
let cols = KECCAK_SPONGE_COL_MAP;
Column::sum(once(&cols.is_full_input_block).chain(&cols.is_final_input_len))
}
/// Information about a Keccak sponge operation needed for witness generation.
#[derive(Clone, Debug)]
pub(crate) struct KeccakSpongeOp {
/// The base address at which inputs are read.
pub(crate) base_address: MemoryAddress,
/// The timestamp at which inputs are read.
pub(crate) timestamp: usize,
/// The input that was read.
pub(crate) input: Vec<u8>,
}
#[derive(Copy, Clone, Default)]
pub struct KeccakSpongeStark<F, const D: usize> {
f: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> KeccakSpongeStark<F, D> {
pub(crate) fn generate_trace(
&self,
operations: Vec<KeccakSpongeOp>,
min_rows: usize,
timing: &mut TimingTree,
) -> Vec<PolynomialValues<F>> {
// Generate the witness row-wise.
let trace_rows = timed!(
timing,
"generate trace rows",
self.generate_trace_rows(operations, min_rows)
);
let trace_polys = timed!(
timing,
"convert to PolynomialValues",
trace_rows_to_poly_values(trace_rows)
);
trace_polys
}
fn generate_trace_rows(
&self,
operations: Vec<KeccakSpongeOp>,
min_rows: usize,
) -> Vec<[F; NUM_KECCAK_SPONGE_COLUMNS]> {
let base_len: usize = operations
.iter()
.map(|op| op.input.len() / KECCAK_RATE_BYTES + 1)
.sum();
let mut rows = Vec::with_capacity(base_len.max(min_rows).next_power_of_two());
for op in operations {
rows.extend(self.generate_rows_for_op(op));
}
let padded_rows = rows.len().max(min_rows).next_power_of_two();
for _ in rows.len()..padded_rows {
rows.push(self.generate_padding_row());
}
rows
}
fn generate_rows_for_op(&self, op: KeccakSpongeOp) -> Vec<[F; NUM_KECCAK_SPONGE_COLUMNS]> {
let mut rows = Vec::with_capacity(op.input.len() / KECCAK_RATE_BYTES + 1);
let mut sponge_state = [0u32; KECCAK_WIDTH_U32S];
let mut input_blocks = op.input.chunks_exact(KECCAK_RATE_BYTES);
let mut already_absorbed_bytes = 0;
for block in input_blocks.by_ref() {
let row = self.generate_full_input_row(
&op,
already_absorbed_bytes,
sponge_state,
block.try_into().unwrap(),
);
sponge_state[..KECCAK_DIGEST_U32S]
.iter_mut()
.zip(row.updated_digest_state_bytes.chunks_exact(4))
.for_each(|(s, bs)| {
*s = bs
.iter()
.enumerate()
.map(|(i, b)| (b.to_canonical_u64() as u32) << (8 * i))
.sum();
});
sponge_state[KECCAK_DIGEST_U32S..]
.iter_mut()
.zip(row.partial_updated_state_u32s)
.for_each(|(s, x)| *s = x.to_canonical_u64() as u32);
rows.push(row.into());
already_absorbed_bytes += KECCAK_RATE_BYTES;
}
rows.push(
self.generate_final_row(
&op,
already_absorbed_bytes,
sponge_state,
input_blocks.remainder(),
)
.into(),
);
rows
}
fn generate_full_input_row(
&self,
op: &KeccakSpongeOp,
already_absorbed_bytes: usize,
sponge_state: [u32; KECCAK_WIDTH_U32S],
block: [u8; KECCAK_RATE_BYTES],
) -> KeccakSpongeColumnsView<F> {
let mut row = KeccakSpongeColumnsView {
is_full_input_block: F::ONE,
..Default::default()
};
row.block_bytes = block.map(F::from_canonical_u8);
Self::generate_common_fields(&mut row, op, already_absorbed_bytes, sponge_state);
row
}
fn generate_final_row(
&self,
op: &KeccakSpongeOp,
already_absorbed_bytes: usize,
sponge_state: [u32; KECCAK_WIDTH_U32S],
final_inputs: &[u8],
) -> KeccakSpongeColumnsView<F> {
assert_eq!(already_absorbed_bytes + final_inputs.len(), op.input.len());
let mut row = KeccakSpongeColumnsView::default();
for (block_byte, input_byte) in row.block_bytes.iter_mut().zip(final_inputs) {
*block_byte = F::from_canonical_u8(*input_byte);
}
// pad10*1 rule
if final_inputs.len() == KECCAK_RATE_BYTES - 1 {
// Both 1s are placed in the same byte.
row.block_bytes[final_inputs.len()] = F::from_canonical_u8(0b10000001);
} else {
row.block_bytes[final_inputs.len()] = F::ONE;
row.block_bytes[KECCAK_RATE_BYTES - 1] = F::from_canonical_u8(0b10000000);
}
row.is_final_input_len[final_inputs.len()] = F::ONE;
Self::generate_common_fields(&mut row, op, already_absorbed_bytes, sponge_state);
row
}
/// Generate fields that are common to both full-input-block rows and final-block rows.
/// Also updates the sponge state with a single absorption.
fn generate_common_fields(
row: &mut KeccakSpongeColumnsView<F>,
op: &KeccakSpongeOp,
already_absorbed_bytes: usize,
mut sponge_state: [u32; KECCAK_WIDTH_U32S],
) {
row.context = F::from_canonical_usize(op.base_address.context);
row.segment = F::from_canonical_usize(op.base_address.segment);
row.virt = F::from_canonical_usize(op.base_address.virt);
row.timestamp = F::from_canonical_usize(op.timestamp);
row.len = F::from_canonical_usize(op.input.len());
row.already_absorbed_bytes = F::from_canonical_usize(already_absorbed_bytes);
row.original_rate_u32s = sponge_state[..KECCAK_RATE_U32S]
.iter()
.map(|x| F::from_canonical_u32(*x))
.collect_vec()
.try_into()
.unwrap();
row.original_capacity_u32s = sponge_state[KECCAK_RATE_U32S..]
.iter()
.map(|x| F::from_canonical_u32(*x))
.collect_vec()
.try_into()
.unwrap();
let block_u32s = (0..KECCAK_RATE_U32S).map(|i| {
u32::from_le_bytes(
row.block_bytes[i * 4..(i + 1) * 4]
.iter()
.map(|x| x.to_canonical_u64() as u8)
.collect_vec()
.try_into()
.unwrap(),
)
});
// xor in the block
for (state_i, block_i) in sponge_state.iter_mut().zip(block_u32s) {
*state_i ^= block_i;
}
let xored_rate_u32s: [u32; KECCAK_RATE_U32S] = sponge_state[..KECCAK_RATE_U32S]
.to_vec()
.try_into()
.unwrap();
row.xored_rate_u32s = xored_rate_u32s.map(F::from_canonical_u32);
keccakf_u32s(&mut sponge_state);
// Store all but the first `KECCAK_DIGEST_U32S` limbs in the updated state.
// Those missing limbs will be broken down into bytes and stored separately.
row.partial_updated_state_u32s.copy_from_slice(
&sponge_state[KECCAK_DIGEST_U32S..]
.iter()
.copied()
.map(|i| F::from_canonical_u32(i))
.collect::<Vec<_>>(),
);
sponge_state[..KECCAK_DIGEST_U32S]
.iter()
.enumerate()
.for_each(|(l, &elt)| {
let mut cur_elt = elt;
(0..4).for_each(|i| {
row.updated_digest_state_bytes[l * 4 + i] =
F::from_canonical_u32(cur_elt & 0xFF);
cur_elt >>= 8;
});
// 32-bit limb reconstruction consistency check.
let mut s = row.updated_digest_state_bytes[l * 4].to_canonical_u64();
for i in 1..4 {
s += row.updated_digest_state_bytes[l * 4 + i].to_canonical_u64() << (8 * i);
}
assert_eq!(elt as u64, s, "not equal");
})
}
fn generate_padding_row(&self) -> [F; NUM_KECCAK_SPONGE_COLUMNS] {
// The default instance has is_full_input_block = is_final_block = 0,
// indicating that it's a dummy/padding row.
KeccakSpongeColumnsView::default().into()
}
}
impl<F: RichField + Extendable<D>, const D: usize> Stark<F, D> for KeccakSpongeStark<F, D> {
type EvaluationFrame<FE, P, const D2: usize> = StarkFrame<P, NUM_KECCAK_SPONGE_COLUMNS>
where
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>;
type EvaluationFrameTarget = StarkFrame<ExtensionTarget<D>, NUM_KECCAK_SPONGE_COLUMNS>;
fn eval_packed_generic<FE, P, const D2: usize>(
&self,
vars: &Self::EvaluationFrame<FE, P, D2>,
yield_constr: &mut ConstraintConsumer<P>,
) where
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>,
{
let local_values: &[P; NUM_KECCAK_SPONGE_COLUMNS] =
vars.get_local_values().try_into().unwrap();
let local_values: &KeccakSpongeColumnsView<P> = local_values.borrow();
let next_values: &[P; NUM_KECCAK_SPONGE_COLUMNS] =
vars.get_next_values().try_into().unwrap();
let next_values: &KeccakSpongeColumnsView<P> = next_values.borrow();
// Each flag (full-input block, final block or implied dummy flag) must be boolean.
let is_full_input_block = local_values.is_full_input_block;
yield_constr.constraint(is_full_input_block * (is_full_input_block - P::ONES));
let is_final_block: P = local_values.is_final_input_len.iter().copied().sum();
yield_constr.constraint(is_final_block * (is_final_block - P::ONES));
for &is_final_len in local_values.is_final_input_len.iter() {
yield_constr.constraint(is_final_len * (is_final_len - P::ONES));
}
// Ensure that full-input block and final block flags are not set to 1 at the same time.
yield_constr.constraint(is_final_block * is_full_input_block);
// If this is the first row, the original sponge state should be 0 and already_absorbed_bytes = 0.
let already_absorbed_bytes = local_values.already_absorbed_bytes;
yield_constr.constraint_first_row(already_absorbed_bytes);
for &original_rate_elem in local_values.original_rate_u32s.iter() {
yield_constr.constraint_first_row(original_rate_elem);
}
for &original_capacity_elem in local_values.original_capacity_u32s.iter() {
yield_constr.constraint_first_row(original_capacity_elem);
}
// If this is a final block, the next row's original sponge state should be 0 and already_absorbed_bytes = 0.
yield_constr.constraint_transition(is_final_block * next_values.already_absorbed_bytes);
for &original_rate_elem in next_values.original_rate_u32s.iter() {
yield_constr.constraint_transition(is_final_block * original_rate_elem);
}
for &original_capacity_elem in next_values.original_capacity_u32s.iter() {
yield_constr.constraint_transition(is_final_block * original_capacity_elem);
}
// If this is a full-input block, the next row's address, time and len must match as well as its timestamp.
yield_constr.constraint_transition(
is_full_input_block * (local_values.context - next_values.context),
);
yield_constr.constraint_transition(
is_full_input_block * (local_values.segment - next_values.segment),
);
yield_constr
.constraint_transition(is_full_input_block * (local_values.virt - next_values.virt));
yield_constr.constraint_transition(
is_full_input_block * (local_values.timestamp - next_values.timestamp),
);
// If this is a full-input block, the next row's "before" should match our "after" state.
for (current_bytes_after, next_before) in local_values
.updated_digest_state_bytes
.chunks_exact(4)
.zip(&next_values.original_rate_u32s[..KECCAK_DIGEST_U32S])
{
let mut current_after = current_bytes_after[0];
for i in 1..4 {
current_after +=
current_bytes_after[i] * P::from(FE::from_canonical_usize(1 << (8 * i)));
}
yield_constr
.constraint_transition(is_full_input_block * (*next_before - current_after));
}
for (&current_after, &next_before) in local_values
.partial_updated_state_u32s
.iter()
.zip(next_values.original_rate_u32s[KECCAK_DIGEST_U32S..].iter())
{
yield_constr.constraint_transition(is_full_input_block * (next_before - current_after));
}
for (&current_after, &next_before) in local_values
.partial_updated_state_u32s
.iter()
.skip(KECCAK_RATE_U32S - KECCAK_DIGEST_U32S)
.zip(next_values.original_capacity_u32s.iter())
{
yield_constr.constraint_transition(is_full_input_block * (next_before - current_after));
}
// If this is a full-input block, the next row's already_absorbed_bytes should be ours plus `KECCAK_RATE_BYTES`.
yield_constr.constraint_transition(
is_full_input_block
* (already_absorbed_bytes + P::from(FE::from_canonical_usize(KECCAK_RATE_BYTES))
- next_values.already_absorbed_bytes),
);
// A dummy row is always followed by another dummy row, so the prover can't put dummy rows "in between" to avoid the above checks.
let is_dummy = P::ONES - is_full_input_block - is_final_block;
let next_is_final_block: P = next_values.is_final_input_len.iter().copied().sum();
yield_constr.constraint_transition(
is_dummy * (next_values.is_full_input_block + next_is_final_block),
);
// If this is a final block, is_final_input_len implies `len - already_absorbed == i`.
let offset = local_values.len - already_absorbed_bytes;
for (i, &is_final_len) in local_values.is_final_input_len.iter().enumerate() {
let entry_match = offset - P::from(FE::from_canonical_usize(i));
yield_constr.constraint(is_final_len * entry_match);
}
}
fn eval_ext_circuit(
&self,
builder: &mut plonky2::plonk::circuit_builder::CircuitBuilder<F, D>,
vars: &Self::EvaluationFrameTarget,
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
) {
let local_values: &[ExtensionTarget<D>; NUM_KECCAK_SPONGE_COLUMNS] =
vars.get_local_values().try_into().unwrap();
let local_values: &KeccakSpongeColumnsView<ExtensionTarget<D>> = local_values.borrow();
let next_values: &[ExtensionTarget<D>; NUM_KECCAK_SPONGE_COLUMNS] =
vars.get_next_values().try_into().unwrap();
let next_values: &KeccakSpongeColumnsView<ExtensionTarget<D>> = next_values.borrow();
let one = builder.one_extension();
// Each flag (full-input block, final block or implied dummy flag) must be boolean.
let is_full_input_block = local_values.is_full_input_block;
let constraint = builder.mul_sub_extension(
is_full_input_block,
is_full_input_block,
is_full_input_block,
);
yield_constr.constraint(builder, constraint);
let is_final_block = builder.add_many_extension(local_values.is_final_input_len);
let constraint = builder.mul_sub_extension(is_final_block, is_final_block, is_final_block);
yield_constr.constraint(builder, constraint);
for &is_final_len in local_values.is_final_input_len.iter() {
let constraint = builder.mul_sub_extension(is_final_len, is_final_len, is_final_len);
yield_constr.constraint(builder, constraint);
}
// Ensure that full-input block and final block flags are not set to 1 at the same time.
let constraint = builder.mul_extension(is_final_block, is_full_input_block);
yield_constr.constraint(builder, constraint);
// If this is the first row, the original sponge state should be 0 and already_absorbed_bytes = 0.
let already_absorbed_bytes = local_values.already_absorbed_bytes;
yield_constr.constraint_first_row(builder, already_absorbed_bytes);
for &original_rate_elem in local_values.original_rate_u32s.iter() {
yield_constr.constraint_first_row(builder, original_rate_elem);
}
for &original_capacity_elem in local_values.original_capacity_u32s.iter() {
yield_constr.constraint_first_row(builder, original_capacity_elem);
}
// If this is a final block, the next row's original sponge state should be 0 and already_absorbed_bytes = 0.
let constraint = builder.mul_extension(is_final_block, next_values.already_absorbed_bytes);
yield_constr.constraint_transition(builder, constraint);
for &original_rate_elem in next_values.original_rate_u32s.iter() {
let constraint = builder.mul_extension(is_final_block, original_rate_elem);
yield_constr.constraint_transition(builder, constraint);
}
for &original_capacity_elem in next_values.original_capacity_u32s.iter() {
let constraint = builder.mul_extension(is_final_block, original_capacity_elem);
yield_constr.constraint_transition(builder, constraint);
}
// If this is a full-input block, the next row's address, time and len must match as well as its timestamp.
let context_diff = builder.sub_extension(local_values.context, next_values.context);
let constraint = builder.mul_extension(is_full_input_block, context_diff);
yield_constr.constraint_transition(builder, constraint);
let segment_diff = builder.sub_extension(local_values.segment, next_values.segment);
let constraint = builder.mul_extension(is_full_input_block, segment_diff);
yield_constr.constraint_transition(builder, constraint);
let virt_diff = builder.sub_extension(local_values.virt, next_values.virt);
let constraint = builder.mul_extension(is_full_input_block, virt_diff);
yield_constr.constraint_transition(builder, constraint);
let timestamp_diff = builder.sub_extension(local_values.timestamp, next_values.timestamp);
let constraint = builder.mul_extension(is_full_input_block, timestamp_diff);
yield_constr.constraint_transition(builder, constraint);
// If this is a full-input block, the next row's "before" should match our "after" state.
for (current_bytes_after, next_before) in local_values
.updated_digest_state_bytes
.chunks_exact(4)
.zip(&next_values.original_rate_u32s[..KECCAK_DIGEST_U32S])
{
let mut current_after = current_bytes_after[0];
for i in 1..4 {
current_after = builder.mul_const_add_extension(
F::from_canonical_usize(1 << (8 * i)),
current_bytes_after[i],
current_after,
);
}
let diff = builder.sub_extension(*next_before, current_after);
let constraint = builder.mul_extension(is_full_input_block, diff);
yield_constr.constraint_transition(builder, constraint);
}
for (&current_after, &next_before) in local_values
.partial_updated_state_u32s
.iter()
.zip(next_values.original_rate_u32s[KECCAK_DIGEST_U32S..].iter())
{
let diff = builder.sub_extension(next_before, current_after);
let constraint = builder.mul_extension(is_full_input_block, diff);
yield_constr.constraint_transition(builder, constraint);
}
for (&current_after, &next_before) in local_values
.partial_updated_state_u32s
.iter()
.skip(KECCAK_RATE_U32S - KECCAK_DIGEST_U32S)
.zip(next_values.original_capacity_u32s.iter())
{
let diff = builder.sub_extension(next_before, current_after);
let constraint = builder.mul_extension(is_full_input_block, diff);
yield_constr.constraint_transition(builder, constraint);
}
// If this is a full-input block, the next row's already_absorbed_bytes should be ours plus `KECCAK_RATE_BYTES`.
let absorbed_bytes = builder.add_const_extension(
already_absorbed_bytes,
F::from_canonical_usize(KECCAK_RATE_BYTES),
);
let absorbed_diff =
builder.sub_extension(absorbed_bytes, next_values.already_absorbed_bytes);
let constraint = builder.mul_extension(is_full_input_block, absorbed_diff);
yield_constr.constraint_transition(builder, constraint);
// A dummy row is always followed by another dummy row, so the prover can't put dummy rows "in between" to avoid the above checks.
let is_dummy = {
let tmp = builder.sub_extension(one, is_final_block);
builder.sub_extension(tmp, is_full_input_block)
};
let next_is_final_block = builder.add_many_extension(next_values.is_final_input_len);
let constraint = {
let tmp = builder.add_extension(next_is_final_block, next_values.is_full_input_block);
builder.mul_extension(is_dummy, tmp)
};
yield_constr.constraint_transition(builder, constraint);
// If this is a final block, is_final_input_len implies `len - already_absorbed == i`.
let offset = builder.sub_extension(local_values.len, already_absorbed_bytes);
for (i, &is_final_len) in local_values.is_final_input_len.iter().enumerate() {
let index = builder.constant_extension(F::from_canonical_usize(i).into());
let entry_match = builder.sub_extension(offset, index);
let constraint = builder.mul_extension(is_final_len, entry_match);
yield_constr.constraint(builder, constraint);
}
}
fn constraint_degree(&self) -> usize {
3
}
}
#[cfg(test)]
mod tests {
use std::borrow::Borrow;
use anyhow::Result;
use itertools::Itertools;
use keccak_hash::keccak;
use plonky2::field::goldilocks_field::GoldilocksField;
use plonky2::field::types::PrimeField64;
use plonky2::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use crate::keccak_sponge::columns::KeccakSpongeColumnsView;
use crate::keccak_sponge::keccak_sponge_stark::{KeccakSpongeOp, KeccakSpongeStark};
use crate::memory::segments::Segment;
use crate::stark_testing::{test_stark_circuit_constraints, test_stark_low_degree};
use crate::witness::memory::MemoryAddress;
#[test]
fn test_stark_degree() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type S = KeccakSpongeStark<F, D>;
let stark = S::default();
test_stark_low_degree(stark)
}
#[test]
fn test_stark_circuit() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type S = KeccakSpongeStark<F, D>;
let stark = S::default();
test_stark_circuit_constraints::<F, C, S, D>(stark)
}
#[test]
fn test_generation() -> Result<()> {
const D: usize = 2;
type F = GoldilocksField;
type S = KeccakSpongeStark<F, D>;
let input = vec![1, 2, 3];
let expected_output = keccak(&input);
let op = KeccakSpongeOp {
base_address: MemoryAddress {
context: 0,
segment: Segment::Code as usize,
virt: 0,
},
timestamp: 0,
input,
};
let stark = S::default();
let rows = stark.generate_rows_for_op(op);
assert_eq!(rows.len(), 1);
let last_row: &KeccakSpongeColumnsView<F> = rows.last().unwrap().borrow();
let output = last_row
.updated_digest_state_bytes
.iter()
.map(|x| x.to_canonical_u64() as u8)
.collect_vec();
assert_eq!(output, expected_output.0);
Ok(())
}
}