plonky2/insertion/src/insertion_gate.rs
Daniel Lubarov 3346d3f902
field_types -> types (#583)
* `field_types` -> `types`

Here too, I think "field" is usually clear from context, e.g. in `use plonky2::field::types::Field;`.

* fixes

* fmt
2022-06-27 12:24:09 -07:00

425 lines
16 KiB
Rust

use std::marker::PhantomData;
use std::ops::Range;
use plonky2::field::extension::{Extendable, FieldExtension};
use plonky2::field::types::Field;
use plonky2::gates::gate::Gate;
use plonky2::gates::util::StridedConstraintConsumer;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::ext_target::ExtensionTarget;
use plonky2::iop::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
use plonky2::iop::target::Target;
use plonky2::iop::wire::Wire;
use plonky2::iop::witness::{PartitionWitness, Witness};
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
/// A gate for inserting a value into a list at a non-deterministic location.
#[derive(Clone, Debug)]
pub(crate) struct InsertionGate<F: RichField + Extendable<D>, const D: usize> {
pub vec_size: usize,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> InsertionGate<F, D> {
pub fn new(vec_size: usize) -> Self {
Self {
vec_size,
_phantom: PhantomData,
}
}
pub fn wires_insertion_index(&self) -> usize {
0
}
pub fn wires_element_to_insert(&self) -> Range<usize> {
1..D + 1
}
pub fn wires_original_list_item(&self, i: usize) -> Range<usize> {
debug_assert!(i < self.vec_size);
let start = (i + 1) * D + 1;
start..start + D
}
fn start_of_output_wires(&self) -> usize {
(self.vec_size + 1) * D + 1
}
pub fn wires_output_list_item(&self, i: usize) -> Range<usize> {
debug_assert!(i <= self.vec_size);
let start = self.start_of_output_wires() + i * D;
start..start + D
}
fn start_of_intermediate_wires(&self) -> usize {
self.start_of_output_wires() + (self.vec_size + 1) * D
}
/// An intermediate wire for a dummy variable used to show equality.
/// The prover sets this to 1/(x-y) if x != y, or to an arbitrary value if
/// x == y.
pub fn wire_equality_dummy_for_round_r(&self, r: usize) -> usize {
self.start_of_intermediate_wires() + r
}
// An intermediate wire for the "insert_here" variable (1 if the current index is the index at
/// which to insert the new value, 0 otherwise).
pub fn wire_insert_here_for_round_r(&self, r: usize) -> usize {
self.start_of_intermediate_wires() + (self.vec_size + 1) + r
}
}
impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for InsertionGate<F, D> {
fn id(&self) -> String {
format!("{:?}<D={}>", self, D)
}
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
let insertion_index = vars.local_wires[self.wires_insertion_index()];
let list_items = (0..self.vec_size)
.map(|i| vars.get_local_ext_algebra(self.wires_original_list_item(i)))
.collect::<Vec<_>>();
let output_list_items = (0..=self.vec_size)
.map(|i| vars.get_local_ext_algebra(self.wires_output_list_item(i)))
.collect::<Vec<_>>();
let element_to_insert = vars.get_local_ext_algebra(self.wires_element_to_insert());
let mut constraints = Vec::with_capacity(self.num_constraints());
let mut already_inserted = F::Extension::ZERO;
for r in 0..=self.vec_size {
let cur_index = F::Extension::from_canonical_usize(r);
let difference = cur_index - insertion_index;
let equality_dummy = vars.local_wires[self.wire_equality_dummy_for_round_r(r)];
let insert_here = vars.local_wires[self.wire_insert_here_for_round_r(r)];
// The two equality constraints.
constraints.push(difference * equality_dummy - (F::Extension::ONE - insert_here));
constraints.push(insert_here * difference);
let mut new_item = element_to_insert.scalar_mul(insert_here);
if r > 0 {
new_item += list_items[r - 1].scalar_mul(already_inserted);
}
already_inserted += insert_here;
if r < self.vec_size {
new_item += list_items[r].scalar_mul(F::Extension::ONE - already_inserted);
}
// Output constraint.
constraints.extend((new_item - output_list_items[r]).to_basefield_array());
}
constraints
}
fn eval_unfiltered_base_one(
&self,
vars: EvaluationVarsBase<F>,
mut yield_constr: StridedConstraintConsumer<F>,
) {
let insertion_index = vars.local_wires[self.wires_insertion_index()];
let list_items = (0..self.vec_size)
.map(|i| vars.get_local_ext(self.wires_original_list_item(i)))
.collect::<Vec<_>>();
let output_list_items = (0..=self.vec_size)
.map(|i| vars.get_local_ext(self.wires_output_list_item(i)))
.collect::<Vec<_>>();
let element_to_insert = vars.get_local_ext(self.wires_element_to_insert());
let mut already_inserted = F::ZERO;
for r in 0..=self.vec_size {
let cur_index = F::from_canonical_usize(r);
let difference = cur_index - insertion_index;
let equality_dummy = vars.local_wires[self.wire_equality_dummy_for_round_r(r)];
let insert_here = vars.local_wires[self.wire_insert_here_for_round_r(r)];
// The two equality constraints.
yield_constr.one(difference * equality_dummy - (F::ONE - insert_here));
yield_constr.one(insert_here * difference);
let mut new_item = element_to_insert.scalar_mul(insert_here);
if r > 0 {
new_item += list_items[r - 1].scalar_mul(already_inserted);
}
already_inserted += insert_here;
if r < self.vec_size {
new_item += list_items[r].scalar_mul(F::ONE - already_inserted);
}
// Output constraint.
yield_constr.many((new_item - output_list_items[r]).to_basefield_array());
}
}
fn eval_unfiltered_circuit(
&self,
builder: &mut CircuitBuilder<F, D>,
vars: EvaluationTargets<D>,
) -> Vec<ExtensionTarget<D>> {
let insertion_index = vars.local_wires[self.wires_insertion_index()];
let list_items = (0..self.vec_size)
.map(|i| vars.get_local_ext_algebra(self.wires_original_list_item(i)))
.collect::<Vec<_>>();
let output_list_items = (0..=self.vec_size)
.map(|i| vars.get_local_ext_algebra(self.wires_output_list_item(i)))
.collect::<Vec<_>>();
let element_to_insert = vars.get_local_ext_algebra(self.wires_element_to_insert());
let mut constraints = Vec::with_capacity(self.num_constraints());
let mut already_inserted = builder.constant_extension(F::Extension::ZERO);
for r in 0..=self.vec_size {
let cur_index_ext = F::Extension::from_canonical_usize(r);
let cur_index = builder.constant_extension(cur_index_ext);
let difference = builder.sub_extension(cur_index, insertion_index);
let equality_dummy = vars.local_wires[self.wire_equality_dummy_for_round_r(r)];
let insert_here = vars.local_wires[self.wire_insert_here_for_round_r(r)];
// The two equality constraints.
let prod = builder.mul_extension(difference, equality_dummy);
let one = builder.constant_extension(F::Extension::ONE);
let not_insert_here = builder.sub_extension(one, insert_here);
let first_equality_constraint = builder.sub_extension(prod, not_insert_here);
constraints.push(first_equality_constraint);
let second_equality_constraint = builder.mul_extension(insert_here, difference);
constraints.push(second_equality_constraint);
let mut new_item = builder.scalar_mul_ext_algebra(insert_here, element_to_insert);
if r > 0 {
new_item = builder.scalar_mul_add_ext_algebra(
already_inserted,
list_items[r - 1],
new_item,
);
}
already_inserted = builder.add_extension(already_inserted, insert_here);
if r < self.vec_size {
let not_already_inserted = builder.sub_extension(one, already_inserted);
new_item = builder.scalar_mul_add_ext_algebra(
not_already_inserted,
list_items[r],
new_item,
);
}
// Output constraint.
let diff = builder.sub_ext_algebra(new_item, output_list_items[r]);
constraints.extend(diff.to_ext_target_array());
}
constraints
}
fn generators(&self, row: usize, _local_constants: &[F]) -> Vec<Box<dyn WitnessGenerator<F>>> {
let gen = InsertionGenerator::<F, D> {
row,
gate: self.clone(),
};
vec![Box::new(gen.adapter())]
}
fn num_wires(&self) -> usize {
self.wire_insert_here_for_round_r(self.vec_size) + 1
}
fn num_constants(&self) -> usize {
0
}
fn degree(&self) -> usize {
2
}
fn num_constraints(&self) -> usize {
(self.vec_size + 1) * (2 + D)
}
}
#[derive(Debug)]
struct InsertionGenerator<F: RichField + Extendable<D>, const D: usize> {
row: usize,
gate: InsertionGate<F, D>,
}
impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F> for InsertionGenerator<F, D> {
fn dependencies(&self) -> Vec<Target> {
let local_target = |column| Target::wire(self.row, column);
let local_targets = |columns: Range<usize>| columns.map(local_target);
let mut deps = vec![local_target(self.gate.wires_insertion_index())];
deps.extend(local_targets(self.gate.wires_element_to_insert()));
for i in 0..self.gate.vec_size {
deps.extend(local_targets(self.gate.wires_original_list_item(i)));
}
deps
}
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
let local_wire = |column| Wire {
row: self.row,
column,
};
let get_local_wire = |column| witness.get_wire(local_wire(column));
let get_local_ext = |wire_range: Range<usize>| {
debug_assert_eq!(wire_range.len(), D);
let values = wire_range.map(get_local_wire).collect::<Vec<_>>();
let arr = values.try_into().unwrap();
F::Extension::from_basefield_array(arr)
};
// Compute the new vector and the values for equality_dummy and insert_here
let vec_size = self.gate.vec_size;
let orig_vec = (0..vec_size)
.map(|i| get_local_ext(self.gate.wires_original_list_item(i)))
.collect::<Vec<_>>();
let to_insert = get_local_ext(self.gate.wires_element_to_insert());
let insertion_index_f = get_local_wire(self.gate.wires_insertion_index());
let insertion_index = insertion_index_f.to_canonical_u64() as usize;
debug_assert!(
insertion_index <= vec_size,
"Insertion index {} is larger than the vector size {}",
insertion_index,
vec_size
);
let mut new_vec = orig_vec;
new_vec.insert(insertion_index, to_insert);
let mut equality_dummy_vals = Vec::new();
for i in 0..=vec_size {
equality_dummy_vals.push(if i == insertion_index {
F::ONE
} else {
(F::from_canonical_usize(i) - insertion_index_f).inverse()
});
}
let mut insert_here_vals = vec![F::ZERO; vec_size];
insert_here_vals.insert(insertion_index, F::ONE);
for i in 0..=vec_size {
let output_wires = self.gate.wires_output_list_item(i).map(local_wire);
out_buffer.set_ext_wires(output_wires, new_vec[i]);
let equality_dummy_wire = local_wire(self.gate.wire_equality_dummy_for_round_r(i));
out_buffer.set_wire(equality_dummy_wire, equality_dummy_vals[i]);
let insert_here_wire = local_wire(self.gate.wire_insert_here_for_round_r(i));
out_buffer.set_wire(insert_here_wire, insert_here_vals[i]);
}
}
}
#[cfg(test)]
mod tests {
use std::marker::PhantomData;
use anyhow::Result;
use plonky2::field::goldilocks_field::GoldilocksField;
use plonky2::field::types::Field;
use plonky2::gates::gate::Gate;
use plonky2::gates::gate_testing::{test_eval_fns, test_low_degree};
use plonky2::hash::hash_types::HashOut;
use plonky2::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use plonky2::plonk::vars::EvaluationVars;
use crate::insertion_gate::InsertionGate;
#[test]
fn wire_indices() {
let gate = InsertionGate::<GoldilocksField, 4> {
vec_size: 3,
_phantom: PhantomData,
};
assert_eq!(gate.wires_insertion_index(), 0);
assert_eq!(gate.wires_element_to_insert(), 1..5);
assert_eq!(gate.wires_original_list_item(0), 5..9);
assert_eq!(gate.wires_original_list_item(2), 13..17);
assert_eq!(gate.wires_output_list_item(0), 17..21);
assert_eq!(gate.wires_output_list_item(3), 29..33);
assert_eq!(gate.wire_equality_dummy_for_round_r(0), 33);
assert_eq!(gate.wire_equality_dummy_for_round_r(3), 36);
assert_eq!(gate.wire_insert_here_for_round_r(0), 37);
assert_eq!(gate.wire_insert_here_for_round_r(3), 40);
}
#[test]
fn low_degree() {
test_low_degree::<GoldilocksField, _, 4>(InsertionGate::new(4));
}
#[test]
fn eval_fns() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
test_eval_fns::<F, C, _, D>(InsertionGate::new(4))
}
#[test]
fn test_gate_constraint() {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type FF = <C as GenericConfig<D>>::FE;
/// Returns the local wires for an insertion gate given the original vector, element to
/// insert, and index.
fn get_wires(orig_vec: Vec<FF>, insertion_index: usize, element_to_insert: FF) -> Vec<FF> {
let vec_size = orig_vec.len();
let mut v = vec![F::from_canonical_usize(insertion_index)];
v.extend(element_to_insert.0);
for j in 0..vec_size {
v.extend(orig_vec[j].0);
}
let mut new_vec = orig_vec;
new_vec.insert(insertion_index, element_to_insert);
let mut equality_dummy_vals = Vec::new();
for i in 0..=vec_size {
equality_dummy_vals.push(if i == insertion_index {
F::ONE
} else {
(F::from_canonical_usize(i) - F::from_canonical_usize(insertion_index))
.inverse()
});
}
let mut insert_here_vals = vec![F::ZERO; vec_size];
insert_here_vals.insert(insertion_index, F::ONE);
for j in 0..=vec_size {
v.extend(new_vec[j].0);
}
v.extend(equality_dummy_vals);
v.extend(insert_here_vals);
v.iter().map(|&x| x.into()).collect()
}
let orig_vec = vec![FF::rand(); 3];
let insertion_index = 1;
let element_to_insert = FF::rand();
let gate = InsertionGate::<F, D> {
vec_size: 3,
_phantom: PhantomData,
};
let vars = EvaluationVars {
local_constants: &[],
local_wires: &get_wires(orig_vec, insertion_index, element_to_insert),
public_inputs_hash: &HashOut::rand(),
};
assert!(
gate.eval_unfiltered(vars).iter().all(|x| x.is_zero()),
"Gate constraints are not satisfied."
);
}
}