Daniel Lubarov b8e97aaaf8 Fix logic and Keccak CTLs
Lots of little bugs!

- The Keccak sponge table's padding logic was wrong, it was mixing up the number of rows with the number of hashes.
- The Keccak sponge table's Keccak-looking data was wrong - input to Keccak-f should be after xor'ing in the block.
- The Keccak sponge table's logic-looking filter was wrong. We do 5 logic CTLs for any final-block row, even if some of the xors are with 0s from Keccak padding.
- The CPU was using the wrong/outdated output memory channel for its Keccak sponge and logic CTLs.
- The Keccak table just didn't have a way to filter out padding rows. I added a filter column for this.
- The Keccak table wasn't remembering the original preimage of a permutation; lookers were seeing the preimage of the final step. I added columns for the original preimage.
- `ctl_data_logic` was using the wrong memory channel
- Kernel bootloading generation was using the wrong length for its Keccak sponge CTL, and its `keccak_sponge_log` was seeing the wrong clock since it was called after adding the final bootloading row.
2022-12-19 15:42:59 -08:00
2022-12-09 21:48:36 -08:00
2022-12-11 22:43:26 -08:00
2022-12-19 15:42:59 -08:00
2022-12-11 22:43:26 -08:00
2021-10-27 10:44:36 -07:00
2022-12-04 10:15:28 -08:00

Plonky2 & more

This repository was originally for Plonky2, a SNARK implementation based on techniques from PLONK and FRI. It has since expanded to include tools such as Starky, a highly performant STARK implementation.

Documentation

For more details about the Plonky2 argument system, see this writeup.

Building

Plonky2 requires a recent nightly toolchain, although we plan to transition to stable in the future.

To use a nightly toolchain for Plonky2 by default, you can run

rustup override set nightly

in the Plonky2 directory.

Running

To see recursion performance, one can run this bench, which generates a chain of three recursion proofs:

RUSTFLAGS=-Ctarget-cpu=native cargo run --release --example bench_recursion -- -vv

Jemalloc

Plonky2 prefers the Jemalloc memory allocator due to its superior performance. To use it, include jemallocator = "0.5.0" inCargo.tomland add the following lines to your main.rs:

use jemallocator::Jemalloc;

#[global_allocator]
static GLOBAL: Jemalloc = Jemalloc;

Jemalloc is known to cause crashes when a binary compiled for x86 is run on an Apple silicon-based Mac under Rosetta 2. If you are experiencing crashes on your Apple silicon Mac, run rustc --print target-libdir. The output should contain aarch64-apple-darwin. If the output contains x86_64-apple-darwin, then you are running the Rust toolchain for x86; we recommend switching to the native ARM version.

Licenses

As this is a monorepo, see the individual crates within for license information.

Security

This code has not yet been audited, and should not be used in any production systems.

While Plonky2 is configurable, its defaults generally target 100 bits of security. The default FRI configuration targets 100 bits of conjectured security based on the conjecture in ethSTARK.

Plonky2's default hash function is Poseidon, configured with 8 full rounds, 22 partial rounds, a width of 12 field elements (each ~64 bits), and an S-box of x^7. BBLP22 suggests that this configuration may have around 95 bits of security, falling a bit short of our 100 bit target.

Description
the Plonky2 proof system
Readme
Languages
Rust 98.4%
JavaScript 0.6%
Python 0.6%
HTML 0.3%