plonky2/plonky2/src/gates/poseidon.rs
2022-02-14 19:37:24 +01:00

626 lines
24 KiB
Rust

use std::marker::PhantomData;
use plonky2_field::extension_field::Extendable;
use plonky2_field::field_types::Field;
use crate::gates::batchable::MultiOpsGate;
use crate::gates::gate::Gate;
use crate::gates::poseidon_mds::PoseidonMdsGate;
use crate::gates::util::StridedConstraintConsumer;
use crate::hash::hash_types::RichField;
use crate::hash::hashing::SPONGE_WIDTH;
use crate::hash::poseidon;
use crate::hash::poseidon::Poseidon;
use crate::iop::ext_target::ExtensionTarget;
use crate::iop::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
use crate::iop::target::Target;
use crate::iop::wire::Wire;
use crate::iop::witness::{PartitionWitness, Witness};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
/// Evaluates a full Poseidon permutation with 12 state elements.
///
/// This also has some extra features to make it suitable for efficiently verifying Merkle proofs.
/// It has a flag which can be used to swap the first four inputs with the next four, for ordering
/// sibling digests.
#[derive(Debug)]
pub struct PoseidonGate<F: RichField + Extendable<D>, const D: usize> {
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> PoseidonGate<F, D> {
pub fn new() -> Self {
PoseidonGate {
_phantom: PhantomData,
}
}
/// The wire index for the `i`th input to the permutation.
pub fn wire_input(i: usize) -> usize {
i
}
/// The wire index for the `i`th output to the permutation.
pub fn wire_output(i: usize) -> usize {
SPONGE_WIDTH + i
}
/// If this is set to 1, the first four inputs will be swapped with the next four inputs. This
/// is useful for ordering hashes in Merkle proofs. Otherwise, this should be set to 0.
pub const WIRE_SWAP: usize = 2 * SPONGE_WIDTH;
const START_DELTA: usize = 2 * SPONGE_WIDTH + 1;
/// A wire which stores `swap * (input[i + 4] - input[i])`; used to compute the swapped inputs.
fn wire_delta(i: usize) -> usize {
assert!(i < 4);
Self::START_DELTA + i
}
const START_FULL_0: usize = Self::START_DELTA + 4;
/// A wire which stores the input of the `i`-th S-box of the `round`-th round of the first set
/// of full rounds.
fn wire_full_sbox_0(round: usize, i: usize) -> usize {
debug_assert!(
round != 0,
"First round S-box inputs are not stored as wires"
);
debug_assert!(round < poseidon::HALF_N_FULL_ROUNDS);
debug_assert!(i < SPONGE_WIDTH);
Self::START_FULL_0 + SPONGE_WIDTH * (round - 1) + i
}
const START_PARTIAL: usize =
Self::START_FULL_0 + SPONGE_WIDTH * (poseidon::HALF_N_FULL_ROUNDS - 1);
/// A wire which stores the input of the S-box of the `round`-th round of the partial rounds.
fn wire_partial_sbox(round: usize) -> usize {
debug_assert!(round < poseidon::N_PARTIAL_ROUNDS);
Self::START_PARTIAL + round
}
const START_FULL_1: usize = Self::START_PARTIAL + poseidon::N_PARTIAL_ROUNDS;
/// A wire which stores the input of the `i`-th S-box of the `round`-th round of the second set
/// of full rounds.
fn wire_full_sbox_1(round: usize, i: usize) -> usize {
debug_assert!(round < poseidon::HALF_N_FULL_ROUNDS);
debug_assert!(i < SPONGE_WIDTH);
Self::START_FULL_1 + SPONGE_WIDTH * round + i
}
/// End of wire indices, exclusive.
fn end() -> usize {
Self::START_FULL_1 + SPONGE_WIDTH * poseidon::HALF_N_FULL_ROUNDS
}
}
impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for PoseidonGate<F, D> {
fn id(&self) -> String {
format!("{:?}<WIDTH={}>", self, SPONGE_WIDTH)
}
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
let mut constraints = Vec::with_capacity(self.num_constraints());
// Assert that `swap` is binary.
let swap = vars.local_wires[Self::WIRE_SWAP];
constraints.push(swap * (swap - F::Extension::ONE));
// Assert that each delta wire is set properly: `delta_i = swap * (rhs - lhs)`.
for i in 0..4 {
let input_lhs = vars.local_wires[Self::wire_input(i)];
let input_rhs = vars.local_wires[Self::wire_input(i + 4)];
let delta_i = vars.local_wires[Self::wire_delta(i)];
constraints.push(swap * (input_rhs - input_lhs) - delta_i);
}
// Compute the possibly-swapped input layer.
let mut state = [F::Extension::ZERO; SPONGE_WIDTH];
for i in 0..4 {
let delta_i = vars.local_wires[Self::wire_delta(i)];
let input_lhs = Self::wire_input(i);
let input_rhs = Self::wire_input(i + 4);
state[i] = vars.local_wires[input_lhs] + delta_i;
state[i + 4] = vars.local_wires[input_rhs] - delta_i;
}
for i in 8..SPONGE_WIDTH {
state[i] = vars.local_wires[Self::wire_input(i)];
}
let mut round_ctr = 0;
// First set of full rounds.
for r in 0..poseidon::HALF_N_FULL_ROUNDS {
<F as Poseidon>::constant_layer_field(&mut state, round_ctr);
if r != 0 {
for i in 0..SPONGE_WIDTH {
let sbox_in = vars.local_wires[Self::wire_full_sbox_0(r, i)];
constraints.push(state[i] - sbox_in);
state[i] = sbox_in;
}
}
<F as Poseidon>::sbox_layer_field(&mut state);
state = <F as Poseidon>::mds_layer_field(&state);
round_ctr += 1;
}
// Partial rounds.
<F as Poseidon>::partial_first_constant_layer(&mut state);
state = <F as Poseidon>::mds_partial_layer_init(&state);
for r in 0..(poseidon::N_PARTIAL_ROUNDS - 1) {
let sbox_in = vars.local_wires[Self::wire_partial_sbox(r)];
constraints.push(state[0] - sbox_in);
state[0] = <F as Poseidon>::sbox_monomial(sbox_in);
state[0] +=
F::Extension::from_canonical_u64(<F as Poseidon>::FAST_PARTIAL_ROUND_CONSTANTS[r]);
state = <F as Poseidon>::mds_partial_layer_fast_field(&state, r);
}
let sbox_in = vars.local_wires[Self::wire_partial_sbox(poseidon::N_PARTIAL_ROUNDS - 1)];
constraints.push(state[0] - sbox_in);
state[0] = <F as Poseidon>::sbox_monomial(sbox_in);
state =
<F as Poseidon>::mds_partial_layer_fast_field(&state, poseidon::N_PARTIAL_ROUNDS - 1);
round_ctr += poseidon::N_PARTIAL_ROUNDS;
// Second set of full rounds.
for r in 0..poseidon::HALF_N_FULL_ROUNDS {
<F as Poseidon>::constant_layer_field(&mut state, round_ctr);
for i in 0..SPONGE_WIDTH {
let sbox_in = vars.local_wires[Self::wire_full_sbox_1(r, i)];
constraints.push(state[i] - sbox_in);
state[i] = sbox_in;
}
<F as Poseidon>::sbox_layer_field(&mut state);
state = <F as Poseidon>::mds_layer_field(&state);
round_ctr += 1;
}
for i in 0..SPONGE_WIDTH {
constraints.push(state[i] - vars.local_wires[Self::wire_output(i)]);
}
constraints
}
fn eval_unfiltered_base_one(
&self,
vars: EvaluationVarsBase<F>,
mut yield_constr: StridedConstraintConsumer<F>,
) {
// Assert that `swap` is binary.
let swap = vars.local_wires[Self::WIRE_SWAP];
yield_constr.one(swap * swap.sub_one());
// Assert that each delta wire is set properly: `delta_i = swap * (rhs - lhs)`.
for i in 0..4 {
let input_lhs = vars.local_wires[Self::wire_input(i)];
let input_rhs = vars.local_wires[Self::wire_input(i + 4)];
let delta_i = vars.local_wires[Self::wire_delta(i)];
yield_constr.one(swap * (input_rhs - input_lhs) - delta_i);
}
// Compute the possibly-swapped input layer.
let mut state = [F::ZERO; SPONGE_WIDTH];
for i in 0..4 {
let delta_i = vars.local_wires[Self::wire_delta(i)];
let input_lhs = Self::wire_input(i);
let input_rhs = Self::wire_input(i + 4);
state[i] = vars.local_wires[input_lhs] + delta_i;
state[i + 4] = vars.local_wires[input_rhs] - delta_i;
}
for i in 8..SPONGE_WIDTH {
state[i] = vars.local_wires[Self::wire_input(i)];
}
let mut round_ctr = 0;
// First set of full rounds.
for r in 0..poseidon::HALF_N_FULL_ROUNDS {
<F as Poseidon>::constant_layer(&mut state, round_ctr);
if r != 0 {
for i in 0..SPONGE_WIDTH {
let sbox_in = vars.local_wires[Self::wire_full_sbox_0(r, i)];
yield_constr.one(state[i] - sbox_in);
state[i] = sbox_in;
}
}
<F as Poseidon>::sbox_layer(&mut state);
state = <F as Poseidon>::mds_layer(&state);
round_ctr += 1;
}
// Partial rounds.
<F as Poseidon>::partial_first_constant_layer(&mut state);
state = <F as Poseidon>::mds_partial_layer_init(&state);
for r in 0..(poseidon::N_PARTIAL_ROUNDS - 1) {
let sbox_in = vars.local_wires[Self::wire_partial_sbox(r)];
yield_constr.one(state[0] - sbox_in);
state[0] = <F as Poseidon>::sbox_monomial(sbox_in);
state[0] += F::from_canonical_u64(<F as Poseidon>::FAST_PARTIAL_ROUND_CONSTANTS[r]);
state = <F as Poseidon>::mds_partial_layer_fast(&state, r);
}
let sbox_in = vars.local_wires[Self::wire_partial_sbox(poseidon::N_PARTIAL_ROUNDS - 1)];
yield_constr.one(state[0] - sbox_in);
state[0] = <F as Poseidon>::sbox_monomial(sbox_in);
state = <F as Poseidon>::mds_partial_layer_fast(&state, poseidon::N_PARTIAL_ROUNDS - 1);
round_ctr += poseidon::N_PARTIAL_ROUNDS;
// Second set of full rounds.
for r in 0..poseidon::HALF_N_FULL_ROUNDS {
<F as Poseidon>::constant_layer(&mut state, round_ctr);
for i in 0..SPONGE_WIDTH {
let sbox_in = vars.local_wires[Self::wire_full_sbox_1(r, i)];
yield_constr.one(state[i] - sbox_in);
state[i] = sbox_in;
}
<F as Poseidon>::sbox_layer(&mut state);
state = <F as Poseidon>::mds_layer(&state);
round_ctr += 1;
}
for i in 0..SPONGE_WIDTH {
yield_constr.one(state[i] - vars.local_wires[Self::wire_output(i)]);
}
}
fn eval_unfiltered_recursively(
&self,
builder: &mut CircuitBuilder<F, D>,
vars: EvaluationTargets<D>,
) -> Vec<ExtensionTarget<D>> {
// The naive method is more efficient if we have enough routed wires for PoseidonMdsGate.
let use_mds_gate =
builder.config.num_routed_wires >= PoseidonMdsGate::<F, D>::new().num_wires();
let mut constraints = Vec::with_capacity(self.num_constraints());
// Assert that `swap` is binary.
let swap = vars.local_wires[Self::WIRE_SWAP];
constraints.push(builder.mul_sub_extension(swap, swap, swap));
// Assert that each delta wire is set properly: `delta_i = swap * (rhs - lhs)`.
for i in 0..4 {
let input_lhs = vars.local_wires[Self::wire_input(i)];
let input_rhs = vars.local_wires[Self::wire_input(i + 4)];
let delta_i = vars.local_wires[Self::wire_delta(i)];
let diff = builder.sub_extension(input_rhs, input_lhs);
constraints.push(builder.mul_sub_extension(swap, diff, delta_i));
}
// Compute the possibly-swapped input layer.
let mut state = [builder.zero_extension(); SPONGE_WIDTH];
for i in 0..4 {
let delta_i = vars.local_wires[Self::wire_delta(i)];
let input_lhs = vars.local_wires[Self::wire_input(i)];
let input_rhs = vars.local_wires[Self::wire_input(i + 4)];
state[i] = builder.add_extension(input_lhs, delta_i);
state[i + 4] = builder.sub_extension(input_rhs, delta_i);
}
for i in 8..SPONGE_WIDTH {
state[i] = vars.local_wires[Self::wire_input(i)];
}
let mut round_ctr = 0;
// First set of full rounds.
for r in 0..poseidon::HALF_N_FULL_ROUNDS {
<F as Poseidon>::constant_layer_recursive(builder, &mut state, round_ctr);
if r != 0 {
for i in 0..SPONGE_WIDTH {
let sbox_in = vars.local_wires[Self::wire_full_sbox_0(r, i)];
constraints.push(builder.sub_extension(state[i], sbox_in));
state[i] = sbox_in;
}
}
<F as Poseidon>::sbox_layer_recursive(builder, &mut state);
state = <F as Poseidon>::mds_layer_recursive(builder, &state);
round_ctr += 1;
}
// Partial rounds.
if use_mds_gate {
for r in 0..poseidon::N_PARTIAL_ROUNDS {
<F as Poseidon>::constant_layer_recursive(builder, &mut state, round_ctr);
let sbox_in = vars.local_wires[Self::wire_partial_sbox(r)];
constraints.push(builder.sub_extension(state[0], sbox_in));
state[0] = <F as Poseidon>::sbox_monomial_recursive(builder, sbox_in);
state = <F as Poseidon>::mds_layer_recursive(builder, &state);
round_ctr += 1;
}
} else {
<F as Poseidon>::partial_first_constant_layer_recursive(builder, &mut state);
state = <F as Poseidon>::mds_partial_layer_init_recursive(builder, &state);
for r in 0..(poseidon::N_PARTIAL_ROUNDS - 1) {
let sbox_in = vars.local_wires[Self::wire_partial_sbox(r)];
constraints.push(builder.sub_extension(state[0], sbox_in));
state[0] = <F as Poseidon>::sbox_monomial_recursive(builder, sbox_in);
let c = <F as Poseidon>::FAST_PARTIAL_ROUND_CONSTANTS[r];
let c = F::Extension::from_canonical_u64(c);
let c = builder.constant_extension(c);
state[0] = builder.add_extension(state[0], c);
state = <F as Poseidon>::mds_partial_layer_fast_recursive(builder, &state, r);
}
let sbox_in = vars.local_wires[Self::wire_partial_sbox(poseidon::N_PARTIAL_ROUNDS - 1)];
constraints.push(builder.sub_extension(state[0], sbox_in));
state[0] = <F as Poseidon>::sbox_monomial_recursive(builder, sbox_in);
state = <F as Poseidon>::mds_partial_layer_fast_recursive(
builder,
&state,
poseidon::N_PARTIAL_ROUNDS - 1,
);
round_ctr += poseidon::N_PARTIAL_ROUNDS;
}
// Second set of full rounds.
for r in 0..poseidon::HALF_N_FULL_ROUNDS {
<F as Poseidon>::constant_layer_recursive(builder, &mut state, round_ctr);
for i in 0..SPONGE_WIDTH {
let sbox_in = vars.local_wires[Self::wire_full_sbox_1(r, i)];
constraints.push(builder.sub_extension(state[i], sbox_in));
state[i] = sbox_in;
}
<F as Poseidon>::sbox_layer_recursive(builder, &mut state);
state = <F as Poseidon>::mds_layer_recursive(builder, &state);
round_ctr += 1;
}
for i in 0..SPONGE_WIDTH {
constraints
.push(builder.sub_extension(state[i], vars.local_wires[Self::wire_output(i)]));
}
constraints
}
fn generators(
&self,
gate_index: usize,
_local_constants: &[F],
) -> Vec<Box<dyn WitnessGenerator<F>>> {
let gen = PoseidonGenerator::<F, D> {
gate_index,
_phantom: PhantomData,
};
vec![Box::new(gen.adapter())]
}
fn num_wires(&self) -> usize {
Self::end()
}
fn num_constants(&self) -> usize {
0
}
fn degree(&self) -> usize {
7
}
fn num_constraints(&self) -> usize {
SPONGE_WIDTH * (poseidon::N_FULL_ROUNDS_TOTAL - 1)
+ poseidon::N_PARTIAL_ROUNDS
+ SPONGE_WIDTH
+ 1
+ 4
}
}
impl<F: RichField + Extendable<D>, const D: usize> MultiOpsGate<F, D> for PoseidonGate<F, D> {
fn num_ops(&self) -> usize {
1
}
fn dependencies_ith_op(&self, _gate_index: usize, _i: usize) -> Vec<Target> {
unreachable!()
}
}
#[derive(Debug)]
struct PoseidonGenerator<F: RichField + Extendable<D> + Poseidon, const D: usize> {
gate_index: usize,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D> + Poseidon, const D: usize> SimpleGenerator<F>
for PoseidonGenerator<F, D>
{
fn dependencies(&self) -> Vec<Target> {
(0..SPONGE_WIDTH)
.map(|i| PoseidonGate::<F, D>::wire_input(i))
.chain(Some(PoseidonGate::<F, D>::WIRE_SWAP))
.map(|input| Target::wire(self.gate_index, input))
.collect()
}
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
let local_wire = |input| Wire {
gate: self.gate_index,
input,
};
let mut state = (0..SPONGE_WIDTH)
.map(|i| witness.get_wire(local_wire(PoseidonGate::<F, D>::wire_input(i))))
.collect::<Vec<_>>();
let swap_value = witness.get_wire(local_wire(PoseidonGate::<F, D>::WIRE_SWAP));
debug_assert!(swap_value == F::ZERO || swap_value == F::ONE);
for i in 0..4 {
let delta_i = swap_value * (state[i + 4] - state[i]);
out_buffer.set_wire(local_wire(PoseidonGate::<F, D>::wire_delta(i)), delta_i);
}
if swap_value == F::ONE {
for i in 0..4 {
state.swap(i, 4 + i);
}
}
let mut state: [F; SPONGE_WIDTH] = state.try_into().unwrap();
let mut round_ctr = 0;
for r in 0..poseidon::HALF_N_FULL_ROUNDS {
<F as Poseidon>::constant_layer_field(&mut state, round_ctr);
if r != 0 {
for i in 0..SPONGE_WIDTH {
out_buffer.set_wire(
local_wire(PoseidonGate::<F, D>::wire_full_sbox_0(r, i)),
state[i],
);
}
}
<F as Poseidon>::sbox_layer_field(&mut state);
state = <F as Poseidon>::mds_layer_field(&state);
round_ctr += 1;
}
<F as Poseidon>::partial_first_constant_layer(&mut state);
state = <F as Poseidon>::mds_partial_layer_init(&state);
for r in 0..(poseidon::N_PARTIAL_ROUNDS - 1) {
out_buffer.set_wire(
local_wire(PoseidonGate::<F, D>::wire_partial_sbox(r)),
state[0],
);
state[0] = <F as Poseidon>::sbox_monomial(state[0]);
state[0] += F::from_canonical_u64(<F as Poseidon>::FAST_PARTIAL_ROUND_CONSTANTS[r]);
state = <F as Poseidon>::mds_partial_layer_fast_field(&state, r);
}
out_buffer.set_wire(
local_wire(PoseidonGate::<F, D>::wire_partial_sbox(
poseidon::N_PARTIAL_ROUNDS - 1,
)),
state[0],
);
state[0] = <F as Poseidon>::sbox_monomial(state[0]);
state =
<F as Poseidon>::mds_partial_layer_fast_field(&state, poseidon::N_PARTIAL_ROUNDS - 1);
round_ctr += poseidon::N_PARTIAL_ROUNDS;
for r in 0..poseidon::HALF_N_FULL_ROUNDS {
<F as Poseidon>::constant_layer_field(&mut state, round_ctr);
for i in 0..SPONGE_WIDTH {
out_buffer.set_wire(
local_wire(PoseidonGate::<F, D>::wire_full_sbox_1(r, i)),
state[i],
);
}
<F as Poseidon>::sbox_layer_field(&mut state);
state = <F as Poseidon>::mds_layer_field(&state);
round_ctr += 1;
}
for i in 0..SPONGE_WIDTH {
out_buffer.set_wire(local_wire(PoseidonGate::<F, D>::wire_output(i)), state[i]);
}
}
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use plonky2_field::field_types::Field;
use plonky2_field::goldilocks_field::GoldilocksField;
use crate::gates::gate_testing::{test_eval_fns, test_low_degree};
use crate::gates::poseidon::PoseidonGate;
use crate::hash::hashing::SPONGE_WIDTH;
use crate::hash::poseidon::Poseidon;
use crate::iop::generator::generate_partial_witness;
use crate::iop::wire::Wire;
use crate::iop::witness::{PartialWitness, Witness};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::circuit_data::CircuitConfig;
use crate::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
#[test]
fn wire_indices() {
type F = GoldilocksField;
type Gate = PoseidonGate<F, 4>;
assert_eq!(Gate::wire_input(0), 0);
assert_eq!(Gate::wire_input(11), 11);
assert_eq!(Gate::wire_output(0), 12);
assert_eq!(Gate::wire_output(11), 23);
assert_eq!(Gate::WIRE_SWAP, 24);
assert_eq!(Gate::wire_delta(0), 25);
assert_eq!(Gate::wire_delta(3), 28);
assert_eq!(Gate::wire_full_sbox_0(1, 0), 29);
assert_eq!(Gate::wire_full_sbox_0(3, 0), 53);
assert_eq!(Gate::wire_full_sbox_0(3, 11), 64);
assert_eq!(Gate::wire_partial_sbox(0), 65);
assert_eq!(Gate::wire_partial_sbox(21), 86);
assert_eq!(Gate::wire_full_sbox_1(0, 0), 87);
assert_eq!(Gate::wire_full_sbox_1(3, 0), 123);
assert_eq!(Gate::wire_full_sbox_1(3, 11), 134);
}
#[test]
fn generated_output() {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
let config = CircuitConfig {
num_wires: 143,
..CircuitConfig::standard_recursion_config()
};
let mut builder = CircuitBuilder::new(config);
type Gate = PoseidonGate<F, D>;
let gate = Gate::new();
let gate_index = builder.add_gate(gate, vec![], vec![]);
let circuit = builder.build_prover::<C>();
let permutation_inputs = (0..SPONGE_WIDTH)
.map(F::from_canonical_usize)
.collect::<Vec<_>>();
let mut inputs = PartialWitness::new();
inputs.set_wire(
Wire {
gate: gate_index,
input: Gate::WIRE_SWAP,
},
F::ZERO,
);
for i in 0..SPONGE_WIDTH {
inputs.set_wire(
Wire {
gate: gate_index,
input: Gate::wire_input(i),
},
permutation_inputs[i],
);
}
let witness = generate_partial_witness(inputs, &circuit.prover_only, &circuit.common);
let expected_outputs: [F; SPONGE_WIDTH] =
F::poseidon(permutation_inputs.try_into().unwrap());
for i in 0..SPONGE_WIDTH {
let out = witness.get_wire(Wire {
gate: 0,
input: Gate::wire_output(i),
});
assert_eq!(out, expected_outputs[i]);
}
}
#[test]
fn low_degree() {
type F = GoldilocksField;
let gate = PoseidonGate::<F, 4>::new();
test_low_degree(gate)
}
#[test]
fn eval_fns() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
let gate = PoseidonGate::<F, 2>::new();
test_eval_fns::<F, C, _, D>(gate)
}
}