mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-07 08:13:11 +00:00
227 lines
7.8 KiB
Rust
227 lines
7.8 KiB
Rust
use std::fmt::Debug;
|
|
|
|
use plonky2_field::batch_util::batch_multiply_inplace;
|
|
use plonky2_field::extension_field::{Extendable, FieldExtension};
|
|
use plonky2_field::field_types::Field;
|
|
|
|
use crate::gates::batchable::GateRef;
|
|
use crate::gates::gate_tree::Tree;
|
|
use crate::gates::util::StridedConstraintConsumer;
|
|
use crate::hash::hash_types::RichField;
|
|
use crate::iop::ext_target::ExtensionTarget;
|
|
use crate::iop::generator::WitnessGenerator;
|
|
use crate::plonk::circuit_builder::CircuitBuilder;
|
|
use crate::plonk::vars::{
|
|
EvaluationTargets, EvaluationVars, EvaluationVarsBase, EvaluationVarsBaseBatch,
|
|
};
|
|
|
|
/// A custom gate.
|
|
pub trait Gate<F: RichField + Extendable<D>, const D: usize>: 'static + Send + Sync {
|
|
fn id(&self) -> String;
|
|
|
|
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension>;
|
|
|
|
/// Like `eval_unfiltered`, but specialized for points in the base field.
|
|
///
|
|
///
|
|
/// `eval_unfiltered_base_batch` calls this method by default. If `eval_unfiltered_base_batch`
|
|
/// is overridden, then `eval_unfiltered_base_one` is not necessary.
|
|
///
|
|
/// By default, this just calls `eval_unfiltered`, which treats the point as an extension field
|
|
/// element. This isn't very efficient.
|
|
fn eval_unfiltered_base_one(
|
|
&self,
|
|
vars_base: EvaluationVarsBase<F>,
|
|
mut yield_constr: StridedConstraintConsumer<F>,
|
|
) {
|
|
// Note that this method uses `yield_constr` instead of returning its constraints.
|
|
// `yield_constr` abstracts out the underlying memory layout.
|
|
let local_constants = &vars_base
|
|
.local_constants
|
|
.iter()
|
|
.map(|c| F::Extension::from_basefield(*c))
|
|
.collect::<Vec<_>>();
|
|
let local_wires = &vars_base
|
|
.local_wires
|
|
.iter()
|
|
.map(|w| F::Extension::from_basefield(*w))
|
|
.collect::<Vec<_>>();
|
|
let public_inputs_hash = &vars_base.public_inputs_hash;
|
|
let vars = EvaluationVars {
|
|
local_constants,
|
|
local_wires,
|
|
public_inputs_hash,
|
|
};
|
|
let values = self.eval_unfiltered(vars);
|
|
|
|
// Each value should be in the base field, i.e. only the degree-zero part should be nonzero.
|
|
values.into_iter().for_each(|value| {
|
|
debug_assert!(F::Extension::is_in_basefield(&value));
|
|
yield_constr.one(value.to_basefield_array()[0])
|
|
})
|
|
}
|
|
|
|
fn eval_unfiltered_base_batch(&self, vars_base: EvaluationVarsBaseBatch<F>) -> Vec<F> {
|
|
let mut res = vec![F::ZERO; vars_base.len() * self.num_constraints()];
|
|
for (i, vars_base_one) in vars_base.iter().enumerate() {
|
|
self.eval_unfiltered_base_one(
|
|
vars_base_one,
|
|
StridedConstraintConsumer::new(&mut res, vars_base.len(), i),
|
|
);
|
|
}
|
|
res
|
|
}
|
|
|
|
fn eval_unfiltered_recursively(
|
|
&self,
|
|
builder: &mut CircuitBuilder<F, D>,
|
|
vars: EvaluationTargets<D>,
|
|
) -> Vec<ExtensionTarget<D>>;
|
|
|
|
fn eval_filtered(&self, mut vars: EvaluationVars<F, D>, prefix: &[bool]) -> Vec<F::Extension> {
|
|
let filter = compute_filter(prefix, vars.local_constants);
|
|
vars.remove_prefix(prefix);
|
|
self.eval_unfiltered(vars)
|
|
.into_iter()
|
|
.map(|c| filter * c)
|
|
.collect()
|
|
}
|
|
|
|
/// The result is an array of length `vars_batch.len() * self.num_constraints()`. Constraint `j`
|
|
/// for point `i` is at index `j * batch_size + i`.
|
|
fn eval_filtered_base_batch(
|
|
&self,
|
|
mut vars_batch: EvaluationVarsBaseBatch<F>,
|
|
prefix: &[bool],
|
|
) -> Vec<F> {
|
|
let filters: Vec<_> = vars_batch
|
|
.iter()
|
|
.map(|vars| compute_filter(prefix, vars.local_constants))
|
|
.collect();
|
|
vars_batch.remove_prefix(prefix);
|
|
let mut res_batch = self.eval_unfiltered_base_batch(vars_batch);
|
|
for res_chunk in res_batch.chunks_exact_mut(filters.len()) {
|
|
batch_multiply_inplace(res_chunk, &filters);
|
|
}
|
|
res_batch
|
|
}
|
|
|
|
/// Adds this gate's filtered constraints into the `combined_gate_constraints` buffer.
|
|
fn eval_filtered_recursively(
|
|
&self,
|
|
builder: &mut CircuitBuilder<F, D>,
|
|
mut vars: EvaluationTargets<D>,
|
|
prefix: &[bool],
|
|
combined_gate_constraints: &mut Vec<ExtensionTarget<D>>,
|
|
) {
|
|
let filter = compute_filter_recursively(builder, prefix, vars.local_constants);
|
|
vars.remove_prefix(prefix);
|
|
let my_constraints = self.eval_unfiltered_recursively(builder, vars);
|
|
for (acc, c) in combined_gate_constraints.iter_mut().zip(my_constraints) {
|
|
*acc = builder.mul_add_extension(filter, c, *acc);
|
|
}
|
|
}
|
|
|
|
fn generators(
|
|
&self,
|
|
gate_index: usize,
|
|
local_constants: &[F],
|
|
) -> Vec<Box<dyn WitnessGenerator<F>>>;
|
|
|
|
/// The number of wires used by this gate.
|
|
fn num_wires(&self) -> usize;
|
|
|
|
/// The number of constants used by this gate.
|
|
fn num_constants(&self) -> usize;
|
|
|
|
/// The maximum degree among this gate's constraint polynomials.
|
|
fn degree(&self) -> usize;
|
|
|
|
fn num_constraints(&self) -> usize;
|
|
}
|
|
|
|
// /// A wrapper around an `Rc<Gate>` which implements `PartialEq`, `Eq` and `Hash` based on gate IDs.
|
|
// #[derive(Clone)]
|
|
// pub struct GateRef<F: RichField + Extendable<D>, const D: usize>(pub(crate) Arc<dyn Gate<F, D>>);
|
|
//
|
|
// impl<F: RichField + Extendable<D>, const D: usize> GateRef<F, D> {
|
|
// pub fn new<G: Gate<F, D>>(gate: G) -> GateRef<F, D> {
|
|
// GateRef(Arc::new(gate))
|
|
// }
|
|
// }
|
|
//
|
|
// impl<F: RichField + Extendable<D>, const D: usize> PartialEq for GateRef<F, D> {
|
|
// fn eq(&self, other: &Self) -> bool {
|
|
// self.0.id() == other.0.id()
|
|
// }
|
|
// }
|
|
//
|
|
// impl<F: RichField + Extendable<D>, const D: usize> Hash for GateRef<F, D> {
|
|
// fn hash<H: Hasher>(&self, state: &mut H) {
|
|
// self.0.id().hash(state)
|
|
// }
|
|
// }
|
|
//
|
|
// impl<F: RichField + Extendable<D>, const D: usize> Eq for GateRef<F, D> {}
|
|
//
|
|
// impl<F: RichField + Extendable<D>, const D: usize> Debug for GateRef<F, D> {
|
|
// fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
|
// write!(f, "{}", self.0.id())
|
|
// }
|
|
// }
|
|
|
|
/// A gate along with any constants used to configure it.
|
|
#[derive(Clone)]
|
|
pub struct GateInstance<F: RichField + Extendable<D>, const D: usize> {
|
|
pub gate_ref: GateRef<F, D>,
|
|
pub constants: Vec<F>,
|
|
pub params: Vec<F>,
|
|
}
|
|
|
|
/// Map each gate to a boolean prefix used to construct the gate's selector polynomial.
|
|
#[derive(Debug, Clone)]
|
|
pub struct PrefixedGate<F: RichField + Extendable<D>, const D: usize> {
|
|
pub gate: GateRef<F, D>,
|
|
pub prefix: Vec<bool>,
|
|
}
|
|
|
|
impl<F: RichField + Extendable<D>, const D: usize> PrefixedGate<F, D> {
|
|
pub fn from_tree(tree: Tree<GateRef<F, D>>) -> Vec<Self> {
|
|
tree.traversal()
|
|
.into_iter()
|
|
.map(|(gate, prefix)| PrefixedGate { gate, prefix })
|
|
.collect()
|
|
}
|
|
}
|
|
|
|
/// A gate's filter is computed as `prod b_i*c_i + (1-b_i)*(1-c_i)`, with `(b_i)` the prefix and
|
|
/// `(c_i)` the local constants, which is one if the prefix of `constants` matches `prefix`.
|
|
fn compute_filter<'a, K: Field, T: IntoIterator<Item = &'a K>>(prefix: &[bool], constants: T) -> K {
|
|
prefix
|
|
.iter()
|
|
.zip(constants)
|
|
.map(|(&b, &c)| if b { c } else { K::ONE - c })
|
|
.product()
|
|
}
|
|
|
|
fn compute_filter_recursively<F: RichField + Extendable<D>, const D: usize>(
|
|
builder: &mut CircuitBuilder<F, D>,
|
|
prefix: &[bool],
|
|
constants: &[ExtensionTarget<D>],
|
|
) -> ExtensionTarget<D> {
|
|
let one = builder.one_extension();
|
|
let v = prefix
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, &b)| {
|
|
if b {
|
|
constants[i]
|
|
} else {
|
|
builder.sub_extension(one, constants[i])
|
|
}
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
builder.mul_many_extension(&v)
|
|
}
|