plonky2/src/prover.rs
2021-06-17 16:23:15 +02:00

275 lines
9.2 KiB
Rust

use std::time::Instant;
use log::info;
use rayon::prelude::*;
use crate::circuit_data::{CommonCircuitData, ProverOnlyCircuitData};
use crate::field::extension_field::Extendable;
use crate::field::fft::ifft;
use crate::generator::generate_partial_witness;
use crate::plonk_challenger::Challenger;
use crate::plonk_common::eval_vanishing_poly_base;
use crate::polynomial::commitment::ListPolynomialCommitment;
use crate::polynomial::polynomial::PolynomialValues;
use crate::proof::Proof;
use crate::timed;
use crate::util::transpose;
use crate::vars::EvaluationVarsBase;
use crate::witness::{PartialWitness, Witness};
/// Corresponds to constants - sigmas - wires - zs - quotient — polynomial commitments.
pub const PLONK_BLINDING: [bool; 5] = [false, false, true, true, true];
pub(crate) fn prove<F: Extendable<D>, const D: usize>(
prover_data: &ProverOnlyCircuitData<F>,
common_data: &CommonCircuitData<F, D>,
inputs: PartialWitness<F>,
) -> Proof<F, D> {
let fri_config = &common_data.config.fri_config;
let start_proof_gen = Instant::now();
let mut partial_witness = inputs;
info!("Running {} generators", prover_data.generators.len());
timed!(
generate_partial_witness(&mut partial_witness, &prover_data.generators),
"to generate witness"
);
let config = &common_data.config;
let num_wires = config.num_wires;
let num_challenges = config.num_challenges;
let quotient_degree = common_data.quotient_degree();
let degree = common_data.degree();
let witness = partial_witness.full_witness(degree, num_wires);
let wires_values: Vec<PolynomialValues<F>> = timed!(
witness
.wire_values
.iter()
.map(|column| PolynomialValues::new(column.clone()))
.collect(),
"to compute wire polynomials"
);
// TODO: Could try parallelizing the transpose, or not doing it explicitly, instead having
// merkle_root_bit_rev_order do it implicitly.
let wires_commitment = timed!(
ListPolynomialCommitment::new(wires_values, fri_config.rate_bits, true),
"to compute wires commitment"
);
let mut challenger = Challenger::new();
// Observe the instance.
// TODO: Need to include public inputs as well.
challenger.observe_hash(&common_data.circuit_digest);
challenger.observe_hash(&wires_commitment.merkle_tree.root);
let betas = challenger.get_n_challenges(num_challenges);
let gammas = challenger.get_n_challenges(num_challenges);
let plonk_z_vecs = timed!(
compute_zs(&witness, &betas, &gammas, &prover_data, &common_data),
"to compute Z's"
);
let plonk_zs_commitment = timed!(
ListPolynomialCommitment::new(plonk_z_vecs, fri_config.rate_bits, true),
"to commit to Z's"
);
challenger.observe_hash(&plonk_zs_commitment.merkle_tree.root);
let alphas = challenger.get_n_challenges(num_challenges);
let vanishing_polys = timed!(
compute_vanishing_polys(
common_data,
prover_data,
&wires_commitment,
&plonk_zs_commitment,
&betas,
&gammas,
&alphas,
),
"to compute vanishing polys"
);
// Compute the quotient polynomials, aka `t` in the Plonk paper.
let all_quotient_poly_chunks = timed!(
vanishing_polys
.into_par_iter()
.flat_map(|vanishing_poly| {
let vanishing_poly_coeff = ifft(vanishing_poly);
// TODO: run `padded` when the division works.
let quotient_poly_coeff = vanishing_poly_coeff.divide_by_z_h(degree);
let x = F::rand();
assert!(
quotient_poly_coeff.eval(x) * (x.exp(degree as u64) - F::ONE)
!= vanishing_poly_coeff.eval(x),
"That's good news, this should fail! The division by z_h doesn't work yet,\
most likely because compute_vanishing_polys isn't complete (doesn't use filters for example)."
);
// Split t into degree-n chunks.
quotient_poly_coeff.chunks(degree)
})
.collect(),
"to compute quotient polys"
);
let quotient_polys_commitment = timed!(
ListPolynomialCommitment::new_from_polys(
all_quotient_poly_chunks,
fri_config.rate_bits,
true
),
"to commit to quotient polys"
);
challenger.observe_hash(&quotient_polys_commitment.merkle_tree.root);
let zeta = challenger.get_extension_challenge();
let (opening_proof, openings) = timed!(
ListPolynomialCommitment::open_plonk(
&[
&prover_data.constants_commitment,
&prover_data.sigmas_commitment,
&wires_commitment,
&plonk_zs_commitment,
&quotient_polys_commitment,
],
zeta,
&mut challenger,
&common_data.config.fri_config
),
"to compute opening proofs"
);
info!(
"{:.3}s for overall witness & proof generation",
start_proof_gen.elapsed().as_secs_f32()
);
Proof {
wires_root: wires_commitment.merkle_tree.root,
plonk_zs_root: plonk_zs_commitment.merkle_tree.root,
quotient_polys_root: quotient_polys_commitment.merkle_tree.root,
openings,
opening_proof,
}
}
fn compute_zs<F: Extendable<D>, const D: usize>(
witness: &Witness<F>,
betas: &[F],
gammas: &[F],
prover_data: &ProverOnlyCircuitData<F>,
common_data: &CommonCircuitData<F, D>,
) -> Vec<PolynomialValues<F>> {
(0..common_data.config.num_challenges)
.map(|i| compute_z(witness, betas[i], gammas[i], prover_data, common_data))
.collect()
}
fn compute_z<F: Extendable<D>, const D: usize>(
witness: &Witness<F>,
beta: F,
gamma: F,
prover_data: &ProverOnlyCircuitData<F>,
common_data: &CommonCircuitData<F, D>,
) -> PolynomialValues<F> {
let subgroup = &prover_data.subgroup;
let mut plonk_z_points = vec![F::ONE];
let k_is = &common_data.k_is;
for i in 1..common_data.degree() {
let x = subgroup[i - 1];
let mut numerator = F::ONE;
let mut denominator = F::ONE;
let s_sigmas = prover_data.sigmas_commitment.original_values(i - 1);
for j in 0..common_data.config.num_routed_wires {
let wire_value = witness.get_wire(i - 1, j);
let k_i = k_is[j];
let s_id = k_i * x;
let s_sigma = s_sigmas[j];
numerator *= wire_value + beta * s_id + gamma;
denominator *= wire_value + beta * s_sigma + gamma;
}
let last = *plonk_z_points.last().unwrap();
plonk_z_points.push(last * numerator / denominator);
}
plonk_z_points.into()
}
fn compute_vanishing_polys<F: Extendable<D>, const D: usize>(
common_data: &CommonCircuitData<F, D>,
prover_data: &ProverOnlyCircuitData<F>,
wires_commitment: &ListPolynomialCommitment<F>,
plonk_zs_commitment: &ListPolynomialCommitment<F>,
betas: &[F],
gammas: &[F],
alphas: &[F],
) -> Vec<PolynomialValues<F>> {
let num_challenges = common_data.config.num_challenges;
let points = F::two_adic_subgroup(
common_data.degree_bits + common_data.max_filtered_constraint_degree_bits,
);
let lde_size = points.len();
// Low-degree extend the polynomials commited in `comm` to the subgroup of size `lde_size`.
let commitment_to_lde = |comm: &ListPolynomialCommitment<F>| -> Vec<PolynomialValues<F>> {
comm.polynomials
.iter()
.map(|p| p.lde(common_data.max_filtered_constraint_degree_bits).fft())
.collect()
};
let constants_lde = commitment_to_lde(&prover_data.constants_commitment);
let sigmas_lde = commitment_to_lde(&prover_data.sigmas_commitment);
let wires_lde = commitment_to_lde(wires_commitment);
let zs_lde = commitment_to_lde(plonk_zs_commitment);
// Retrieve the polynomial values at index `i`.
let get_at_index = |ldes: &[PolynomialValues<F>], i: usize| {
ldes.iter().map(|l| l.values[i]).collect::<Vec<_>>()
};
let values: Vec<Vec<F>> = points
.into_par_iter()
.enumerate()
.map(|(i, x)| {
let i_next = (i + 1) % lde_size;
let local_constants = &get_at_index(&constants_lde, i);
let s_sigmas = &get_at_index(&sigmas_lde, i);
let local_wires = &get_at_index(&wires_lde, i);
let local_plonk_zs = &get_at_index(&zs_lde, i);
let next_plonk_zs = &get_at_index(&zs_lde, i_next);
debug_assert_eq!(local_wires.len(), common_data.config.num_wires);
debug_assert_eq!(local_plonk_zs.len(), num_challenges);
let vars = EvaluationVarsBase {
local_constants,
local_wires,
};
eval_vanishing_poly_base(
common_data,
x,
vars,
local_plonk_zs,
next_plonk_zs,
s_sigmas,
betas,
gammas,
alphas,
)
})
.collect();
transpose(&values)
.into_iter()
.map(PolynomialValues::new)
.collect()
}