plonky2/evm/src/logic.rs
2022-08-25 20:19:18 -07:00

299 lines
10 KiB
Rust

use std::marker::PhantomData;
use ethereum_types::U256;
use itertools::izip;
use plonky2::field::extension::{Extendable, FieldExtension};
use plonky2::field::packed::PackedField;
use plonky2::field::polynomial::PolynomialValues;
use plonky2::field::types::Field;
use plonky2::hash::hash_types::RichField;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::cross_table_lookup::Column;
use crate::stark::Stark;
use crate::util::{limb_from_bits_le, limb_from_bits_le_recursive, trace_rows_to_poly_values};
use crate::vars::{StarkEvaluationTargets, StarkEvaluationVars};
// Total number of bits per input/output.
const VAL_BITS: usize = 256;
// Number of bits stored per field element. Ensure that this fits; it is not checked.
pub(crate) const PACKED_LIMB_BITS: usize = 32;
// Number of field elements needed to store each input/output at the specified packing.
const PACKED_LEN: usize = (VAL_BITS + PACKED_LIMB_BITS - 1) / PACKED_LIMB_BITS;
pub(crate) mod columns {
use std::cmp::min;
use std::ops::Range;
use super::{PACKED_LEN, PACKED_LIMB_BITS, VAL_BITS};
pub const IS_AND: usize = 0;
pub const IS_OR: usize = IS_AND + 1;
pub const IS_XOR: usize = IS_OR + 1;
// The inputs are decomposed into bits.
pub const INPUT0: Range<usize> = (IS_XOR + 1)..(IS_XOR + 1) + VAL_BITS;
pub const INPUT1: Range<usize> = INPUT0.end..INPUT0.end + VAL_BITS;
// The result is packed in limbs of `PACKED_LIMB_BITS` bits.
pub const RESULT: Range<usize> = INPUT1.end..INPUT1.end + PACKED_LEN;
pub fn limb_bit_cols_for_input(input_bits: Range<usize>) -> impl Iterator<Item = Range<usize>> {
(0..PACKED_LEN).map(move |i| {
let start = input_bits.start + i * PACKED_LIMB_BITS;
let end = min(start + PACKED_LIMB_BITS, input_bits.end);
start..end
})
}
pub const NUM_COLUMNS: usize = RESULT.end;
}
pub fn ctl_data<F: Field>() -> Vec<Column<F>> {
let mut res = vec![
Column::single(columns::IS_AND),
Column::single(columns::IS_OR),
Column::single(columns::IS_XOR),
];
res.extend(columns::limb_bit_cols_for_input(columns::INPUT0).map(Column::le_bits));
res.extend(columns::limb_bit_cols_for_input(columns::INPUT1).map(Column::le_bits));
res.extend(columns::RESULT.map(Column::single));
res
}
pub fn ctl_filter<F: Field>() -> Column<F> {
Column::sum([columns::IS_AND, columns::IS_OR, columns::IS_XOR])
}
#[derive(Copy, Clone, Default)]
pub struct LogicStark<F, const D: usize> {
pub f: PhantomData<F>,
}
#[derive(Copy, Clone, Debug)]
pub(crate) enum Op {
And,
Or,
Xor,
}
#[derive(Debug)]
pub(crate) struct Operation {
operator: Op,
input0: U256,
input1: U256,
pub(crate) result: U256,
}
impl Operation {
pub(crate) fn new(operator: Op, input0: U256, input1: U256) -> Self {
let result = match operator {
Op::And => input0 & input1,
Op::Or => input0 | input1,
Op::Xor => input0 ^ input1,
};
Operation {
operator,
input0,
input1,
result,
}
}
}
impl<F: RichField, const D: usize> LogicStark<F, D> {
pub(crate) fn generate_trace(&self, operations: Vec<Operation>) -> Vec<PolynomialValues<F>> {
let len = operations.len();
let padded_len = len.next_power_of_two();
let mut rows = Vec::with_capacity(padded_len);
for op in operations {
rows.push(Self::generate_row(op));
}
// Pad to a power of two.
for _ in len..padded_len {
rows.push([F::ZERO; columns::NUM_COLUMNS]);
}
trace_rows_to_poly_values(rows)
}
fn generate_row(operation: Operation) -> [F; columns::NUM_COLUMNS] {
let mut row = [F::ZERO; columns::NUM_COLUMNS];
match operation.operator {
Op::And => row[columns::IS_AND] = F::ONE,
Op::Or => row[columns::IS_OR] = F::ONE,
Op::Xor => row[columns::IS_XOR] = F::ONE,
}
for (i, col) in columns::INPUT0.enumerate() {
row[col] = F::from_bool(operation.input0.bit(i));
}
for (i, col) in columns::INPUT1.enumerate() {
row[col] = F::from_bool(operation.input1.bit(i));
}
for (i, col) in columns::RESULT.enumerate() {
let bit_range = i * PACKED_LIMB_BITS..(i + 1) * PACKED_LIMB_BITS;
row[col] = limb_from_bits_le(bit_range.map(|j| F::from_bool(operation.result.bit(j))));
}
row
}
}
impl<F: RichField + Extendable<D>, const D: usize> Stark<F, D> for LogicStark<F, D> {
const COLUMNS: usize = columns::NUM_COLUMNS;
fn eval_packed_generic<FE, P, const D2: usize>(
&self,
vars: StarkEvaluationVars<FE, P, { Self::COLUMNS }>,
yield_constr: &mut ConstraintConsumer<P>,
) where
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>,
{
let lv = &vars.local_values;
// IS_AND, IS_OR, and IS_XOR come from the CPU table, so we assume they're valid.
let is_and = lv[columns::IS_AND];
let is_or = lv[columns::IS_OR];
let is_xor = lv[columns::IS_XOR];
// The result will be `in0 OP in1 = sum_coeff * (in0 + in1) + and_coeff * (in0 AND in1)`.
// `AND => sum_coeff = 0, and_coeff = 1`
// `OR => sum_coeff = 1, and_coeff = -1`
// `XOR => sum_coeff = 1, and_coeff = -2`
let sum_coeff = is_or + is_xor;
let and_coeff = is_and - is_or - is_xor * FE::TWO;
// Ensure that all bits are indeed bits.
for input_bits_cols in [columns::INPUT0, columns::INPUT1] {
for i in input_bits_cols {
let bit = lv[i];
yield_constr.constraint(bit * (bit - P::ONES));
}
}
// Form the result
for (result_col, x_bits_cols, y_bits_cols) in izip!(
columns::RESULT,
columns::limb_bit_cols_for_input(columns::INPUT0),
columns::limb_bit_cols_for_input(columns::INPUT1),
) {
let x: P = limb_from_bits_le(x_bits_cols.clone().map(|col| lv[col]));
let y: P = limb_from_bits_le(y_bits_cols.clone().map(|col| lv[col]));
let x_bits = x_bits_cols.map(|i| lv[i]);
let y_bits = y_bits_cols.map(|i| lv[i]);
let x_land_y: P = izip!(0.., x_bits, y_bits)
.map(|(i, x_bit, y_bit)| x_bit * y_bit * FE::from_canonical_u64(1 << i))
.sum();
let x_op_y = sum_coeff * (x + y) + and_coeff * x_land_y;
yield_constr.constraint(lv[result_col] - x_op_y);
}
}
fn eval_ext_circuit(
&self,
builder: &mut plonky2::plonk::circuit_builder::CircuitBuilder<F, D>,
vars: StarkEvaluationTargets<D, { Self::COLUMNS }>,
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
) {
let lv = &vars.local_values;
// IS_AND, IS_OR, and IS_XOR come from the CPU table, so we assume they're valid.
let is_and = lv[columns::IS_AND];
let is_or = lv[columns::IS_OR];
let is_xor = lv[columns::IS_XOR];
// The result will be `in0 OP in1 = sum_coeff * (in0 + in1) + and_coeff * (in0 AND in1)`.
// `AND => sum_coeff = 0, and_coeff = 1`
// `OR => sum_coeff = 1, and_coeff = -1`
// `XOR => sum_coeff = 1, and_coeff = -2`
let sum_coeff = builder.add_extension(is_or, is_xor);
let and_coeff = {
let and_coeff = builder.sub_extension(is_and, is_or);
builder.mul_const_add_extension(-F::TWO, is_xor, and_coeff)
};
// Ensure that all bits are indeed bits.
for input_bits_cols in [columns::INPUT0, columns::INPUT1] {
for i in input_bits_cols {
let bit = lv[i];
let constr = builder.mul_sub_extension(bit, bit, bit);
yield_constr.constraint(builder, constr);
}
}
// Form the result
for (result_col, x_bits_cols, y_bits_cols) in izip!(
columns::RESULT,
columns::limb_bit_cols_for_input(columns::INPUT0),
columns::limb_bit_cols_for_input(columns::INPUT1),
) {
let x = limb_from_bits_le_recursive(builder, x_bits_cols.clone().map(|i| lv[i]));
let y = limb_from_bits_le_recursive(builder, y_bits_cols.clone().map(|i| lv[i]));
let x_bits = x_bits_cols.map(|i| lv[i]);
let y_bits = y_bits_cols.map(|i| lv[i]);
let x_land_y = izip!(0usize.., x_bits, y_bits).fold(
builder.zero_extension(),
|acc, (i, x_bit, y_bit)| {
builder.arithmetic_extension(
F::from_canonical_u64(1 << i),
F::ONE,
x_bit,
y_bit,
acc,
)
},
);
let x_op_y = {
let x_op_y = builder.mul_extension(sum_coeff, x);
let x_op_y = builder.mul_add_extension(sum_coeff, y, x_op_y);
builder.mul_add_extension(and_coeff, x_land_y, x_op_y)
};
let constr = builder.sub_extension(lv[result_col], x_op_y);
yield_constr.constraint(builder, constr);
}
}
fn constraint_degree(&self) -> usize {
3
}
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use plonky2::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use crate::logic::LogicStark;
use crate::stark_testing::{test_stark_circuit_constraints, test_stark_low_degree};
#[test]
fn test_stark_degree() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type S = LogicStark<F, D>;
let stark = S {
f: Default::default(),
};
test_stark_low_degree(stark)
}
#[test]
fn test_stark_circuit() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type S = LogicStark<F, D>;
let stark = S {
f: Default::default(),
};
test_stark_circuit_constraints::<F, C, S, D>(stark)
}
}