mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-03 14:23:07 +00:00
579 lines
20 KiB
Rust
579 lines
20 KiB
Rust
use std::any::type_name;
|
|
|
|
use anyhow::{ensure, Result};
|
|
use maybe_rayon::*;
|
|
use plonky2::field::extension::Extendable;
|
|
use plonky2::field::packable::Packable;
|
|
use plonky2::field::packed::PackedField;
|
|
use plonky2::field::polynomial::{PolynomialCoeffs, PolynomialValues};
|
|
use plonky2::field::types::Field;
|
|
use plonky2::field::zero_poly_coset::ZeroPolyOnCoset;
|
|
use plonky2::fri::oracle::PolynomialBatch;
|
|
use plonky2::hash::hash_types::RichField;
|
|
use plonky2::iop::challenger::Challenger;
|
|
use plonky2::plonk::config::{GenericConfig, Hasher};
|
|
use plonky2::timed;
|
|
use plonky2::util::timing::TimingTree;
|
|
use plonky2::util::transpose;
|
|
use plonky2_util::{log2_ceil, log2_strict};
|
|
|
|
use crate::all_stark::{AllStark, Table, NUM_TABLES};
|
|
use crate::config::StarkConfig;
|
|
use crate::constraint_consumer::ConstraintConsumer;
|
|
use crate::cpu::cpu_stark::CpuStark;
|
|
use crate::cross_table_lookup::{cross_table_lookup_data, CtlCheckVars, CtlData};
|
|
use crate::generation::{generate_traces, GenerationInputs};
|
|
use crate::keccak::keccak_stark::KeccakStark;
|
|
use crate::keccak_memory::keccak_memory_stark::KeccakMemoryStark;
|
|
use crate::logic::LogicStark;
|
|
use crate::memory::memory_stark::MemoryStark;
|
|
use crate::permutation::PermutationCheckVars;
|
|
use crate::permutation::{
|
|
compute_permutation_z_polys, get_n_grand_product_challenge_sets, GrandProductChallengeSet,
|
|
};
|
|
use crate::proof::{AllProof, PublicValues, StarkOpeningSet, StarkProof};
|
|
use crate::stark::Stark;
|
|
use crate::vanishing_poly::eval_vanishing_poly;
|
|
use crate::vars::StarkEvaluationVars;
|
|
|
|
/// Generate traces, then create all STARK proofs.
|
|
pub fn prove<F, C, const D: usize>(
|
|
all_stark: &AllStark<F, D>,
|
|
config: &StarkConfig,
|
|
inputs: GenerationInputs,
|
|
timing: &mut TimingTree,
|
|
) -> Result<AllProof<F, C, D>>
|
|
where
|
|
F: RichField + Extendable<D>,
|
|
C: GenericConfig<D, F = F>,
|
|
[(); C::Hasher::HASH_SIZE]:,
|
|
[(); CpuStark::<F, D>::COLUMNS]:,
|
|
[(); KeccakStark::<F, D>::COLUMNS]:,
|
|
[(); KeccakMemoryStark::<F, D>::COLUMNS]:,
|
|
[(); LogicStark::<F, D>::COLUMNS]:,
|
|
[(); MemoryStark::<F, D>::COLUMNS]:,
|
|
{
|
|
let (traces, public_values) = generate_traces(all_stark, inputs, config);
|
|
prove_with_traces(all_stark, config, traces, public_values, timing)
|
|
}
|
|
|
|
/// Compute all STARK proofs.
|
|
pub(crate) fn prove_with_traces<F, C, const D: usize>(
|
|
all_stark: &AllStark<F, D>,
|
|
config: &StarkConfig,
|
|
trace_poly_values: [Vec<PolynomialValues<F>>; NUM_TABLES],
|
|
public_values: PublicValues,
|
|
timing: &mut TimingTree,
|
|
) -> Result<AllProof<F, C, D>>
|
|
where
|
|
F: RichField + Extendable<D>,
|
|
C: GenericConfig<D, F = F>,
|
|
[(); C::Hasher::HASH_SIZE]:,
|
|
[(); CpuStark::<F, D>::COLUMNS]:,
|
|
[(); KeccakStark::<F, D>::COLUMNS]:,
|
|
[(); KeccakMemoryStark::<F, D>::COLUMNS]:,
|
|
[(); LogicStark::<F, D>::COLUMNS]:,
|
|
[(); MemoryStark::<F, D>::COLUMNS]:,
|
|
{
|
|
let rate_bits = config.fri_config.rate_bits;
|
|
let cap_height = config.fri_config.cap_height;
|
|
|
|
let trace_commitments = timed!(
|
|
timing,
|
|
"compute trace commitments",
|
|
trace_poly_values
|
|
.iter()
|
|
.map(|trace| {
|
|
PolynomialBatch::<F, C, D>::from_values(
|
|
// TODO: Cloning this isn't great; consider having `from_values` accept a reference,
|
|
// or having `compute_permutation_z_polys` read trace values from the `PolynomialBatch`.
|
|
trace.clone(),
|
|
rate_bits,
|
|
false,
|
|
cap_height,
|
|
timing,
|
|
None,
|
|
)
|
|
})
|
|
.collect::<Vec<_>>()
|
|
);
|
|
|
|
let trace_caps = trace_commitments
|
|
.iter()
|
|
.map(|c| c.merkle_tree.cap.clone())
|
|
.collect::<Vec<_>>();
|
|
let mut challenger = Challenger::<F, C::Hasher>::new();
|
|
for cap in &trace_caps {
|
|
challenger.observe_cap(cap);
|
|
}
|
|
|
|
let ctl_data_per_table = cross_table_lookup_data::<F, C, D>(
|
|
config,
|
|
&trace_poly_values,
|
|
&all_stark.cross_table_lookups,
|
|
&mut challenger,
|
|
);
|
|
|
|
let cpu_proof = prove_single_table(
|
|
&all_stark.cpu_stark,
|
|
config,
|
|
&trace_poly_values[Table::Cpu as usize],
|
|
&trace_commitments[Table::Cpu as usize],
|
|
&ctl_data_per_table[Table::Cpu as usize],
|
|
&mut challenger,
|
|
timing,
|
|
)?;
|
|
let keccak_proof = prove_single_table(
|
|
&all_stark.keccak_stark,
|
|
config,
|
|
&trace_poly_values[Table::Keccak as usize],
|
|
&trace_commitments[Table::Keccak as usize],
|
|
&ctl_data_per_table[Table::Keccak as usize],
|
|
&mut challenger,
|
|
timing,
|
|
)?;
|
|
let keccak_memory_proof = prove_single_table(
|
|
&all_stark.keccak_memory_stark,
|
|
config,
|
|
&trace_poly_values[Table::KeccakMemory as usize],
|
|
&trace_commitments[Table::KeccakMemory as usize],
|
|
&ctl_data_per_table[Table::KeccakMemory as usize],
|
|
&mut challenger,
|
|
timing,
|
|
)?;
|
|
let logic_proof = prove_single_table(
|
|
&all_stark.logic_stark,
|
|
config,
|
|
&trace_poly_values[Table::Logic as usize],
|
|
&trace_commitments[Table::Logic as usize],
|
|
&ctl_data_per_table[Table::Logic as usize],
|
|
&mut challenger,
|
|
timing,
|
|
)?;
|
|
let memory_proof = prove_single_table(
|
|
&all_stark.memory_stark,
|
|
config,
|
|
&trace_poly_values[Table::Memory as usize],
|
|
&trace_commitments[Table::Memory as usize],
|
|
&ctl_data_per_table[Table::Memory as usize],
|
|
&mut challenger,
|
|
timing,
|
|
)?;
|
|
|
|
let stark_proofs = [
|
|
cpu_proof,
|
|
keccak_proof,
|
|
keccak_memory_proof,
|
|
logic_proof,
|
|
memory_proof,
|
|
];
|
|
|
|
Ok(AllProof {
|
|
stark_proofs,
|
|
public_values,
|
|
})
|
|
}
|
|
|
|
/// Compute proof for a single STARK table.
|
|
fn prove_single_table<F, C, S, const D: usize>(
|
|
stark: &S,
|
|
config: &StarkConfig,
|
|
trace_poly_values: &[PolynomialValues<F>],
|
|
trace_commitment: &PolynomialBatch<F, C, D>,
|
|
ctl_data: &CtlData<F>,
|
|
challenger: &mut Challenger<F, C::Hasher>,
|
|
timing: &mut TimingTree,
|
|
) -> Result<StarkProof<F, C, D>>
|
|
where
|
|
F: RichField + Extendable<D>,
|
|
C: GenericConfig<D, F = F>,
|
|
S: Stark<F, D>,
|
|
[(); C::Hasher::HASH_SIZE]:,
|
|
[(); S::COLUMNS]:,
|
|
{
|
|
let degree = trace_poly_values[0].len();
|
|
let degree_bits = log2_strict(degree);
|
|
let fri_params = config.fri_params(degree_bits);
|
|
let rate_bits = config.fri_config.rate_bits;
|
|
let cap_height = config.fri_config.cap_height;
|
|
assert!(
|
|
fri_params.total_arities() <= degree_bits + rate_bits - cap_height,
|
|
"FRI total reduction arity is too large.",
|
|
);
|
|
|
|
// Permutation arguments.
|
|
let permutation_challenges = stark.uses_permutation_args().then(|| {
|
|
get_n_grand_product_challenge_sets(
|
|
challenger,
|
|
config.num_challenges,
|
|
stark.permutation_batch_size(),
|
|
)
|
|
});
|
|
let permutation_zs = permutation_challenges.as_ref().map(|challenges| {
|
|
compute_permutation_z_polys::<F, C, S, D>(stark, config, trace_poly_values, challenges)
|
|
});
|
|
let num_permutation_zs = permutation_zs.as_ref().map(|v| v.len()).unwrap_or(0);
|
|
|
|
let z_polys = match permutation_zs {
|
|
None => ctl_data.z_polys(),
|
|
Some(mut permutation_zs) => {
|
|
permutation_zs.extend(ctl_data.z_polys());
|
|
permutation_zs
|
|
}
|
|
};
|
|
assert!(!z_polys.is_empty(), "No CTL?");
|
|
|
|
let permutation_ctl_zs_commitment = PolynomialBatch::from_values(
|
|
z_polys,
|
|
rate_bits,
|
|
false,
|
|
config.fri_config.cap_height,
|
|
timing,
|
|
None,
|
|
);
|
|
|
|
let permutation_ctl_zs_cap = permutation_ctl_zs_commitment.merkle_tree.cap.clone();
|
|
challenger.observe_cap(&permutation_ctl_zs_cap);
|
|
|
|
let alphas = challenger.get_n_challenges(config.num_challenges);
|
|
if cfg!(test) {
|
|
check_constraints(
|
|
stark,
|
|
trace_commitment,
|
|
&permutation_ctl_zs_commitment,
|
|
permutation_challenges.as_ref(),
|
|
ctl_data,
|
|
alphas.clone(),
|
|
degree_bits,
|
|
num_permutation_zs,
|
|
config,
|
|
);
|
|
}
|
|
let quotient_polys = compute_quotient_polys::<F, <F as Packable>::Packing, C, S, D>(
|
|
stark,
|
|
trace_commitment,
|
|
&permutation_ctl_zs_commitment,
|
|
permutation_challenges.as_ref(),
|
|
ctl_data,
|
|
alphas,
|
|
degree_bits,
|
|
num_permutation_zs,
|
|
config,
|
|
);
|
|
let all_quotient_chunks = quotient_polys
|
|
.into_par_iter()
|
|
.flat_map(|mut quotient_poly| {
|
|
quotient_poly
|
|
.trim_to_len(degree * stark.quotient_degree_factor())
|
|
.expect("Quotient has failed, the vanishing polynomial is not divisible by Z_H");
|
|
// Split quotient into degree-n chunks.
|
|
quotient_poly.chunks(degree)
|
|
})
|
|
.collect();
|
|
let quotient_commitment = timed!(
|
|
timing,
|
|
"compute quotient commitment",
|
|
PolynomialBatch::from_coeffs(
|
|
all_quotient_chunks,
|
|
rate_bits,
|
|
false,
|
|
config.fri_config.cap_height,
|
|
timing,
|
|
None,
|
|
)
|
|
);
|
|
let quotient_polys_cap = quotient_commitment.merkle_tree.cap.clone();
|
|
challenger.observe_cap("ient_polys_cap);
|
|
|
|
let zeta = challenger.get_extension_challenge::<D>();
|
|
// To avoid leaking witness data, we want to ensure that our opening locations, `zeta` and
|
|
// `g * zeta`, are not in our subgroup `H`. It suffices to check `zeta` only, since
|
|
// `(g * zeta)^n = zeta^n`, where `n` is the order of `g`.
|
|
let g = F::primitive_root_of_unity(degree_bits);
|
|
ensure!(
|
|
zeta.exp_power_of_2(degree_bits) != F::Extension::ONE,
|
|
"Opening point is in the subgroup."
|
|
);
|
|
|
|
let openings = StarkOpeningSet::new(
|
|
zeta,
|
|
g,
|
|
trace_commitment,
|
|
&permutation_ctl_zs_commitment,
|
|
"ient_commitment,
|
|
degree_bits,
|
|
stark.num_permutation_batches(config),
|
|
);
|
|
challenger.observe_openings(&openings.to_fri_openings());
|
|
|
|
let initial_merkle_trees = vec![
|
|
trace_commitment,
|
|
&permutation_ctl_zs_commitment,
|
|
"ient_commitment,
|
|
];
|
|
|
|
let opening_proof = timed!(
|
|
timing,
|
|
"compute openings proof",
|
|
PolynomialBatch::prove_openings(
|
|
&stark.fri_instance(zeta, g, degree_bits, ctl_data.len(), config),
|
|
&initial_merkle_trees,
|
|
challenger,
|
|
&fri_params,
|
|
timing,
|
|
)
|
|
);
|
|
|
|
Ok(StarkProof {
|
|
trace_cap: trace_commitment.merkle_tree.cap.clone(),
|
|
permutation_ctl_zs_cap,
|
|
quotient_polys_cap,
|
|
openings,
|
|
opening_proof,
|
|
})
|
|
}
|
|
|
|
/// Computes the quotient polynomials `(sum alpha^i C_i(x)) / Z_H(x)` for `alpha` in `alphas`,
|
|
/// where the `C_i`s are the Stark constraints.
|
|
fn compute_quotient_polys<'a, F, P, C, S, const D: usize>(
|
|
stark: &S,
|
|
trace_commitment: &'a PolynomialBatch<F, C, D>,
|
|
permutation_ctl_zs_commitment: &'a PolynomialBatch<F, C, D>,
|
|
permutation_challenges: Option<&'a Vec<GrandProductChallengeSet<F>>>,
|
|
ctl_data: &CtlData<F>,
|
|
alphas: Vec<F>,
|
|
degree_bits: usize,
|
|
num_permutation_zs: usize,
|
|
config: &StarkConfig,
|
|
) -> Vec<PolynomialCoeffs<F>>
|
|
where
|
|
F: RichField + Extendable<D>,
|
|
P: PackedField<Scalar = F>,
|
|
C: GenericConfig<D, F = F>,
|
|
S: Stark<F, D>,
|
|
[(); S::COLUMNS]:,
|
|
{
|
|
let degree = 1 << degree_bits;
|
|
let rate_bits = config.fri_config.rate_bits;
|
|
|
|
let quotient_degree_bits = log2_ceil(stark.quotient_degree_factor());
|
|
assert!(
|
|
quotient_degree_bits <= rate_bits,
|
|
"Having constraints of degree higher than the rate is not supported yet."
|
|
);
|
|
let step = 1 << (rate_bits - quotient_degree_bits);
|
|
// When opening the `Z`s polys at the "next" point, need to look at the point `next_step` steps away.
|
|
let next_step = 1 << quotient_degree_bits;
|
|
|
|
// Evaluation of the first Lagrange polynomial on the LDE domain.
|
|
let lagrange_first = PolynomialValues::selector(degree, 0).lde_onto_coset(quotient_degree_bits);
|
|
// Evaluation of the last Lagrange polynomial on the LDE domain.
|
|
let lagrange_last =
|
|
PolynomialValues::selector(degree, degree - 1).lde_onto_coset(quotient_degree_bits);
|
|
|
|
let z_h_on_coset = ZeroPolyOnCoset::<F>::new(degree_bits, quotient_degree_bits);
|
|
|
|
// Retrieve the LDE values at index `i`.
|
|
let get_trace_values_packed = |i_start| -> [P; S::COLUMNS] {
|
|
trace_commitment
|
|
.get_lde_values_packed(i_start, step)
|
|
.try_into()
|
|
.unwrap()
|
|
};
|
|
|
|
// Last element of the subgroup.
|
|
let last = F::primitive_root_of_unity(degree_bits).inverse();
|
|
let size = degree << quotient_degree_bits;
|
|
let coset = F::cyclic_subgroup_coset_known_order(
|
|
F::primitive_root_of_unity(degree_bits + quotient_degree_bits),
|
|
F::coset_shift(),
|
|
size,
|
|
);
|
|
|
|
// We will step by `P::WIDTH`, and in each iteration, evaluate the quotient polynomial at
|
|
// a batch of `P::WIDTH` points.
|
|
let quotient_values = (0..size)
|
|
.into_par_iter()
|
|
.step_by(P::WIDTH)
|
|
.flat_map_iter(|i_start| {
|
|
let i_next_start = (i_start + next_step) % size;
|
|
let i_range = i_start..i_start + P::WIDTH;
|
|
|
|
let x = *P::from_slice(&coset[i_range.clone()]);
|
|
let z_last = x - last;
|
|
let lagrange_basis_first = *P::from_slice(&lagrange_first.values[i_range.clone()]);
|
|
let lagrange_basis_last = *P::from_slice(&lagrange_last.values[i_range]);
|
|
|
|
let mut consumer = ConstraintConsumer::new(
|
|
alphas.clone(),
|
|
z_last,
|
|
lagrange_basis_first,
|
|
lagrange_basis_last,
|
|
);
|
|
let vars = StarkEvaluationVars {
|
|
local_values: &get_trace_values_packed(i_start),
|
|
next_values: &get_trace_values_packed(i_next_start),
|
|
};
|
|
let permutation_check_vars =
|
|
permutation_challenges.map(|permutation_challenge_sets| PermutationCheckVars {
|
|
local_zs: permutation_ctl_zs_commitment.get_lde_values_packed(i_start, step)
|
|
[..num_permutation_zs]
|
|
.to_vec(),
|
|
next_zs: permutation_ctl_zs_commitment
|
|
.get_lde_values_packed(i_next_start, step)[..num_permutation_zs]
|
|
.to_vec(),
|
|
permutation_challenge_sets: permutation_challenge_sets.to_vec(),
|
|
});
|
|
let ctl_vars = ctl_data
|
|
.zs_columns
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, zs_columns)| CtlCheckVars::<F, F, P, 1> {
|
|
local_z: permutation_ctl_zs_commitment.get_lde_values_packed(i_start, step)
|
|
[num_permutation_zs + i],
|
|
next_z: permutation_ctl_zs_commitment.get_lde_values_packed(i_next_start, step)
|
|
[num_permutation_zs + i],
|
|
challenges: zs_columns.challenge,
|
|
columns: &zs_columns.columns,
|
|
filter_column: &zs_columns.filter_column,
|
|
})
|
|
.collect::<Vec<_>>();
|
|
eval_vanishing_poly::<F, F, P, C, S, D, 1>(
|
|
stark,
|
|
config,
|
|
vars,
|
|
permutation_check_vars,
|
|
&ctl_vars,
|
|
&mut consumer,
|
|
);
|
|
let mut constraints_evals = consumer.accumulators();
|
|
// We divide the constraints evaluations by `Z_H(x)`.
|
|
let denominator_inv: P = z_h_on_coset.eval_inverse_packed(i_start);
|
|
for eval in &mut constraints_evals {
|
|
*eval *= denominator_inv;
|
|
}
|
|
|
|
let num_challenges = alphas.len();
|
|
|
|
(0..P::WIDTH).into_iter().map(move |i| {
|
|
(0..num_challenges)
|
|
.map(|j| constraints_evals[j].as_slice()[i])
|
|
.collect()
|
|
})
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
transpose("ient_values)
|
|
.into_par_iter()
|
|
.map(PolynomialValues::new)
|
|
.map(|values| values.coset_ifft(F::coset_shift()))
|
|
.collect()
|
|
}
|
|
|
|
/// Check that all constraints evaluate to zero on `H`.
|
|
/// Can also be used to check the degree of the constraints by evaluating on a larger subgroup.
|
|
fn check_constraints<'a, F, C, S, const D: usize>(
|
|
stark: &S,
|
|
trace_commitment: &'a PolynomialBatch<F, C, D>,
|
|
permutation_ctl_zs_commitment: &'a PolynomialBatch<F, C, D>,
|
|
permutation_challenges: Option<&'a Vec<GrandProductChallengeSet<F>>>,
|
|
ctl_data: &CtlData<F>,
|
|
alphas: Vec<F>,
|
|
degree_bits: usize,
|
|
num_permutation_zs: usize,
|
|
config: &StarkConfig,
|
|
) where
|
|
F: RichField + Extendable<D>,
|
|
C: GenericConfig<D, F = F>,
|
|
S: Stark<F, D>,
|
|
[(); S::COLUMNS]:,
|
|
{
|
|
let degree = 1 << degree_bits;
|
|
let rate_bits = 0; // Set this to higher value to check constraint degree.
|
|
|
|
let size = degree << rate_bits;
|
|
let step = 1 << rate_bits;
|
|
|
|
// Evaluation of the first Lagrange polynomial.
|
|
let lagrange_first = PolynomialValues::selector(degree, 0).lde(rate_bits);
|
|
// Evaluation of the last Lagrange polynomial.
|
|
let lagrange_last = PolynomialValues::selector(degree, degree - 1).lde(rate_bits);
|
|
|
|
let subgroup = F::two_adic_subgroup(degree_bits + rate_bits);
|
|
|
|
// Get the evaluations of a batch of polynomials over our subgroup.
|
|
let get_subgroup_evals = |comm: &PolynomialBatch<F, C, D>| -> Vec<Vec<F>> {
|
|
let values = comm
|
|
.polynomials
|
|
.par_iter()
|
|
.map(|coeffs| coeffs.clone().fft().values)
|
|
.collect::<Vec<_>>();
|
|
transpose(&values)
|
|
};
|
|
|
|
let trace_subgroup_evals = get_subgroup_evals(trace_commitment);
|
|
let permutation_ctl_zs_subgroup_evals = get_subgroup_evals(permutation_ctl_zs_commitment);
|
|
|
|
// Last element of the subgroup.
|
|
let last = F::primitive_root_of_unity(degree_bits).inverse();
|
|
|
|
let constraint_values = (0..size)
|
|
.map(|i| {
|
|
let i_next = (i + step) % size;
|
|
|
|
let x = subgroup[i];
|
|
let z_last = x - last;
|
|
let lagrange_basis_first = lagrange_first.values[i];
|
|
let lagrange_basis_last = lagrange_last.values[i];
|
|
|
|
let mut consumer = ConstraintConsumer::new(
|
|
alphas.clone(),
|
|
z_last,
|
|
lagrange_basis_first,
|
|
lagrange_basis_last,
|
|
);
|
|
let vars = StarkEvaluationVars {
|
|
local_values: trace_subgroup_evals[i].as_slice().try_into().unwrap(),
|
|
next_values: trace_subgroup_evals[i_next].as_slice().try_into().unwrap(),
|
|
};
|
|
let permutation_check_vars =
|
|
permutation_challenges.map(|permutation_challenge_sets| PermutationCheckVars {
|
|
local_zs: permutation_ctl_zs_subgroup_evals[i][..num_permutation_zs].to_vec(),
|
|
next_zs: permutation_ctl_zs_subgroup_evals[i_next][..num_permutation_zs]
|
|
.to_vec(),
|
|
permutation_challenge_sets: permutation_challenge_sets.to_vec(),
|
|
});
|
|
|
|
let ctl_vars = ctl_data
|
|
.zs_columns
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(iii, zs_columns)| CtlCheckVars::<F, F, F, 1> {
|
|
local_z: permutation_ctl_zs_subgroup_evals[i][num_permutation_zs + iii],
|
|
next_z: permutation_ctl_zs_subgroup_evals[i_next][num_permutation_zs + iii],
|
|
challenges: zs_columns.challenge,
|
|
columns: &zs_columns.columns,
|
|
filter_column: &zs_columns.filter_column,
|
|
})
|
|
.collect::<Vec<_>>();
|
|
eval_vanishing_poly::<F, F, F, C, S, D, 1>(
|
|
stark,
|
|
config,
|
|
vars,
|
|
permutation_check_vars,
|
|
&ctl_vars,
|
|
&mut consumer,
|
|
);
|
|
consumer.accumulators()
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
for v in constraint_values {
|
|
assert!(
|
|
v.iter().all(|x| x.is_zero()),
|
|
"Constraint failed in {}",
|
|
type_name::<S>()
|
|
);
|
|
}
|
|
}
|