plonky2/evm/src/cpu/control_flow.rs
2022-11-30 21:00:48 -08:00

190 lines
7.6 KiB
Rust

use plonky2::field::extension::Extendable;
use plonky2::field::packed::PackedField;
use plonky2::field::types::Field;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::ext_target::ExtensionTarget;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::cpu::columns::{CpuColumnsView, COL_MAP};
use crate::cpu::kernel::aggregator::KERNEL;
const NATIVE_INSTRUCTIONS: [usize; 33] = [
COL_MAP.op.add,
COL_MAP.op.mul,
COL_MAP.op.sub,
COL_MAP.op.div,
COL_MAP.op.mod_,
COL_MAP.op.addmod,
COL_MAP.op.mulmod,
COL_MAP.op.addfp254,
COL_MAP.op.mulfp254,
COL_MAP.op.subfp254,
COL_MAP.op.lt,
COL_MAP.op.gt,
COL_MAP.op.eq,
COL_MAP.op.iszero,
COL_MAP.op.and,
COL_MAP.op.or,
COL_MAP.op.xor,
COL_MAP.op.not,
COL_MAP.op.shl,
COL_MAP.op.shr,
COL_MAP.op.keccak_general,
COL_MAP.op.prover_input,
COL_MAP.op.pop,
// not JUMP (need to jump)
// not JUMPI (possible need to jump)
COL_MAP.op.pc,
COL_MAP.op.gas,
COL_MAP.op.jumpdest,
// not PUSH (need to increment by more than 1)
COL_MAP.op.dup,
COL_MAP.op.swap,
COL_MAP.op.get_context,
COL_MAP.op.set_context,
COL_MAP.op.consume_gas,
// not EXIT_KERNEL (performs a jump)
COL_MAP.op.mload_general,
COL_MAP.op.mstore_general,
// not SYSCALL (performs a jump)
];
pub(crate) fn get_halt_pcs<F: Field>() -> (F, F) {
let halt_pc0 = KERNEL.global_labels["halt_pc0"];
let halt_pc1 = KERNEL.global_labels["halt_pc1"];
(
F::from_canonical_usize(halt_pc0),
F::from_canonical_usize(halt_pc1),
)
}
pub(crate) fn get_start_pc<F: Field>() -> F {
let start_pc = KERNEL.global_labels["main"];
F::from_canonical_usize(start_pc)
}
pub fn eval_packed_generic<P: PackedField>(
lv: &CpuColumnsView<P>,
nv: &CpuColumnsView<P>,
yield_constr: &mut ConstraintConsumer<P>,
) {
// Once we start executing instructions, then we continue until the end of the table.
yield_constr.constraint_transition(lv.is_cpu_cycle * (nv.is_cpu_cycle - P::ONES));
// If a row is a CPU cycle and executing a native instruction (implemented as a table row; not
// microcoded) then the program counter is incremented by 1 to obtain the next row's program
// counter. Also, the next row has the same kernel flag.
let is_native_instruction: P = NATIVE_INSTRUCTIONS.iter().map(|&col_i| lv[col_i]).sum();
yield_constr.constraint_transition(
lv.is_cpu_cycle
* is_native_instruction
* (lv.program_counter - nv.program_counter + P::ONES),
);
yield_constr.constraint_transition(
lv.is_cpu_cycle * is_native_instruction * (lv.is_kernel_mode - nv.is_kernel_mode),
);
// If a non-CPU cycle row is followed by a CPU cycle row, then:
// - the `program_counter` of the CPU cycle row is `main` (the entry point of our kernel),
// - execution is in kernel mode, and
// - the stack is empty.
let is_last_noncpu_cycle = (lv.is_cpu_cycle - P::ONES) * nv.is_cpu_cycle;
let pc_diff = nv.program_counter - get_start_pc::<P::Scalar>();
yield_constr.constraint_transition(is_last_noncpu_cycle * pc_diff);
yield_constr.constraint_transition(is_last_noncpu_cycle * (nv.is_kernel_mode - P::ONES));
yield_constr.constraint_transition(is_last_noncpu_cycle * nv.stack_len);
// The last row must be a CPU cycle row.
yield_constr.constraint_last_row(lv.is_cpu_cycle - P::ONES);
// Also, the last row's `program_counter` must be inside the `halt` infinite loop. Note that
// that loop consists of two instructions, so we must check for `halt` and `halt_inner` labels.
let (halt_pc0, halt_pc1) = get_halt_pcs::<P::Scalar>();
yield_constr
.constraint_last_row((lv.program_counter - halt_pc0) * (lv.program_counter - halt_pc1));
// Finally, the last row must be in kernel mode.
yield_constr.constraint_last_row(lv.is_kernel_mode - P::ONES);
}
pub fn eval_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
builder: &mut plonky2::plonk::circuit_builder::CircuitBuilder<F, D>,
lv: &CpuColumnsView<ExtensionTarget<D>>,
nv: &CpuColumnsView<ExtensionTarget<D>>,
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
) {
// Once we start executing instructions, then we continue until the end of the table.
{
let constr = builder.mul_sub_extension(lv.is_cpu_cycle, nv.is_cpu_cycle, lv.is_cpu_cycle);
yield_constr.constraint_transition(builder, constr);
}
// If a row is a CPU cycle and executing a native instruction (implemented as a table row; not
// microcoded) then the program counter is incremented by 1 to obtain the next row's program
// counter. Also, the next row has the same kernel flag.
{
let is_native_instruction =
builder.add_many_extension(NATIVE_INSTRUCTIONS.iter().map(|&col_i| lv[col_i]));
let filter = builder.mul_extension(lv.is_cpu_cycle, is_native_instruction);
let pc_diff = builder.sub_extension(lv.program_counter, nv.program_counter);
let pc_constr = builder.mul_add_extension(filter, pc_diff, filter);
yield_constr.constraint_transition(builder, pc_constr);
let kernel_diff = builder.sub_extension(lv.is_kernel_mode, nv.is_kernel_mode);
let kernel_constr = builder.mul_extension(filter, kernel_diff);
yield_constr.constraint_transition(builder, kernel_constr);
}
// If a non-CPU cycle row is followed by a CPU cycle row, then:
// - the `program_counter` of the CPU cycle row is `main` (the entry point of our kernel),
// - execution is in kernel mode, and
// - the stack is empty.
{
let is_last_noncpu_cycle =
builder.mul_sub_extension(lv.is_cpu_cycle, nv.is_cpu_cycle, nv.is_cpu_cycle);
// Start at `main`.
let main = builder.constant_extension(get_start_pc::<F>().into());
let pc_diff = builder.sub_extension(nv.program_counter, main);
let pc_constr = builder.mul_extension(is_last_noncpu_cycle, pc_diff);
yield_constr.constraint_transition(builder, pc_constr);
// Start in kernel mode
let kernel_constr = builder.mul_sub_extension(
is_last_noncpu_cycle,
nv.is_kernel_mode,
is_last_noncpu_cycle,
);
yield_constr.constraint_transition(builder, kernel_constr);
// Start with empty stack
let kernel_constr = builder.mul_extension(is_last_noncpu_cycle, nv.stack_len);
yield_constr.constraint_transition(builder, kernel_constr);
}
// The last row must be a CPU cycle row.
{
let one = builder.one_extension();
let constr = builder.sub_extension(lv.is_cpu_cycle, one);
yield_constr.constraint_last_row(builder, constr);
}
// Also, the last row's `program_counter` must be inside the `halt` infinite loop. Note that
// that loop consists of two instructions, so we must check for `halt` and `halt_inner` labels.
{
let (halt_pc0, halt_pc1) = get_halt_pcs();
let halt_pc0_target = builder.constant_extension(halt_pc0);
let halt_pc1_target = builder.constant_extension(halt_pc1);
let halt_pc0_offset = builder.sub_extension(lv.program_counter, halt_pc0_target);
let halt_pc1_offset = builder.sub_extension(lv.program_counter, halt_pc1_target);
let constr = builder.mul_extension(halt_pc0_offset, halt_pc1_offset);
yield_constr.constraint_last_row(builder, constr);
}
// Finally, the last row must be in kernel mode.
{
let one = builder.one_extension();
let constr = builder.sub_extension(lv.is_kernel_mode, one);
yield_constr.constraint_last_row(builder, constr);
}
}