mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-05 07:13:08 +00:00
371 lines
12 KiB
Rust
371 lines
12 KiB
Rust
use std::marker::PhantomData;
|
|
|
|
use crate::field::extension_field::target::ExtensionTarget;
|
|
use crate::field::extension_field::Extendable;
|
|
use crate::field::field_types::Field;
|
|
use crate::gates::gate::Gate;
|
|
use crate::iop::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
|
|
use crate::iop::target::Target;
|
|
use crate::iop::wire::Wire;
|
|
use crate::iop::witness::PartialWitness;
|
|
use crate::plonk::circuit_builder::CircuitBuilder;
|
|
use crate::plonk::circuit_data::CircuitConfig;
|
|
use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
|
|
|
|
/// A gate for raising a value to a power.
|
|
#[derive(Clone, Debug)]
|
|
pub(crate) struct ExponentiationGate<F: Extendable<D>, const D: usize> {
|
|
pub num_power_bits: usize,
|
|
pub _phantom: PhantomData<F>,
|
|
}
|
|
|
|
impl<F: Extendable<D>, const D: usize> ExponentiationGate<F, D> {
|
|
pub fn new(config: CircuitConfig) -> Self {
|
|
let num_power_bits = Self::max_power_bits(config.num_wires, config.num_routed_wires);
|
|
Self {
|
|
num_power_bits,
|
|
_phantom: PhantomData,
|
|
}
|
|
}
|
|
|
|
fn max_power_bits(num_wires: usize, num_routed_wires: usize) -> usize {
|
|
// 2 wires are reserved for the base and output.
|
|
let max_for_routed_wires = num_routed_wires - 2;
|
|
let max_for_wires = (num_wires - 2) / 2;
|
|
max_for_routed_wires.min(max_for_wires)
|
|
}
|
|
|
|
pub fn wire_base(&self) -> usize {
|
|
0
|
|
}
|
|
|
|
/// The `i`th bit of the exponent, in little-endian order.
|
|
pub fn wire_power_bit(&self, i: usize) -> usize {
|
|
debug_assert!(i < self.num_power_bits);
|
|
1 + i
|
|
}
|
|
|
|
pub fn wire_output(&self) -> usize {
|
|
1 + self.num_power_bits
|
|
}
|
|
|
|
pub fn wire_intermediate_value(&self, i: usize) -> usize {
|
|
debug_assert!(i < self.num_power_bits);
|
|
2 + self.num_power_bits + i
|
|
}
|
|
}
|
|
|
|
impl<F: Extendable<D>, const D: usize> Gate<F, D> for ExponentiationGate<F, D> {
|
|
fn id(&self) -> String {
|
|
format!("{:?}<D={}>", self, D)
|
|
}
|
|
|
|
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
|
|
let base = vars.local_wires[self.wire_base()];
|
|
|
|
let power_bits: Vec<_> = (0..self.num_power_bits)
|
|
.map(|i| vars.local_wires[self.wire_power_bit(i)])
|
|
.collect();
|
|
let intermediate_values: Vec<_> = (0..self.num_power_bits)
|
|
.map(|i| vars.local_wires[self.wire_intermediate_value(i)])
|
|
.collect();
|
|
|
|
let output = vars.local_wires[self.wire_output()];
|
|
|
|
let mut constraints = Vec::new();
|
|
|
|
for i in 0..self.num_power_bits {
|
|
let prev_intermediate_value = if i == 0 {
|
|
F::Extension::ONE
|
|
} else {
|
|
intermediate_values[i - 1].square()
|
|
};
|
|
|
|
// power_bits is in LE order, but we accumulate in BE order.
|
|
let cur_bit = power_bits[self.num_power_bits - i - 1];
|
|
|
|
let not_cur_bit = F::Extension::ONE - cur_bit;
|
|
let computed_intermediate_value =
|
|
prev_intermediate_value * (cur_bit * base + not_cur_bit);
|
|
constraints.push(computed_intermediate_value - intermediate_values[i]);
|
|
}
|
|
|
|
constraints.push(output - intermediate_values[self.num_power_bits - 1]);
|
|
|
|
constraints
|
|
}
|
|
|
|
fn eval_unfiltered_base(&self, vars: EvaluationVarsBase<F>) -> Vec<F> {
|
|
let base = vars.local_wires[self.wire_base()];
|
|
|
|
let power_bits: Vec<_> = (0..self.num_power_bits)
|
|
.map(|i| vars.local_wires[self.wire_power_bit(i)])
|
|
.collect();
|
|
let intermediate_values: Vec<_> = (0..self.num_power_bits)
|
|
.map(|i| vars.local_wires[self.wire_intermediate_value(i)])
|
|
.collect();
|
|
|
|
let output = vars.local_wires[self.wire_output()];
|
|
|
|
let mut constraints = Vec::new();
|
|
|
|
for i in 0..self.num_power_bits {
|
|
let prev_intermediate_value = if i == 0 {
|
|
F::ONE
|
|
} else {
|
|
intermediate_values[i - 1].square()
|
|
};
|
|
|
|
// power_bits is in LE order, but we accumulate in BE order.
|
|
let cur_bit = power_bits[self.num_power_bits - i - 1];
|
|
|
|
let not_cur_bit = F::ONE - cur_bit;
|
|
let computed_intermediate_value =
|
|
prev_intermediate_value * (cur_bit * base + not_cur_bit);
|
|
constraints.push(computed_intermediate_value - intermediate_values[i]);
|
|
}
|
|
|
|
constraints.push(output - intermediate_values[self.num_power_bits - 1]);
|
|
|
|
constraints
|
|
}
|
|
|
|
fn eval_unfiltered_recursively(
|
|
&self,
|
|
builder: &mut CircuitBuilder<F, D>,
|
|
vars: EvaluationTargets<D>,
|
|
) -> Vec<ExtensionTarget<D>> {
|
|
let base = vars.local_wires[self.wire_base()];
|
|
|
|
let power_bits: Vec<_> = (0..self.num_power_bits)
|
|
.map(|i| vars.local_wires[self.wire_power_bit(i)])
|
|
.collect();
|
|
let intermediate_values: Vec<_> = (0..self.num_power_bits)
|
|
.map(|i| vars.local_wires[self.wire_intermediate_value(i)])
|
|
.collect();
|
|
|
|
let output = vars.local_wires[self.wire_output()];
|
|
|
|
let mut constraints = Vec::new();
|
|
|
|
let one = builder.one_extension();
|
|
for i in 0..self.num_power_bits {
|
|
let prev_intermediate_value = if i == 0 {
|
|
one
|
|
} else {
|
|
builder.square_extension(intermediate_values[i - 1])
|
|
};
|
|
|
|
// power_bits is in LE order, but we accumulate in BE order.
|
|
let cur_bit = power_bits[self.num_power_bits - i - 1];
|
|
let mul_by = builder.select_ext(cur_bit, base, one);
|
|
let intermediate_value_diff =
|
|
builder.mul_sub_extension(prev_intermediate_value, mul_by, intermediate_values[i]);
|
|
constraints.push(intermediate_value_diff);
|
|
}
|
|
|
|
let output_diff =
|
|
builder.sub_extension(output, intermediate_values[self.num_power_bits - 1]);
|
|
constraints.push(output_diff);
|
|
|
|
constraints
|
|
}
|
|
|
|
fn generators(
|
|
&self,
|
|
gate_index: usize,
|
|
_local_constants: &[F],
|
|
) -> Vec<Box<dyn WitnessGenerator<F>>> {
|
|
let gen = ExponentiationGenerator::<F, D> {
|
|
gate_index,
|
|
gate: self.clone(),
|
|
};
|
|
vec![Box::new(gen)]
|
|
}
|
|
|
|
fn num_wires(&self) -> usize {
|
|
self.wire_intermediate_value(self.num_power_bits - 1) + 1
|
|
}
|
|
|
|
fn num_constants(&self) -> usize {
|
|
0
|
|
}
|
|
|
|
fn degree(&self) -> usize {
|
|
4
|
|
}
|
|
|
|
fn num_constraints(&self) -> usize {
|
|
self.num_power_bits + 1
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct ExponentiationGenerator<F: Extendable<D>, const D: usize> {
|
|
gate_index: usize,
|
|
gate: ExponentiationGate<F, D>,
|
|
}
|
|
|
|
impl<F: Extendable<D>, const D: usize> SimpleGenerator<F> for ExponentiationGenerator<F, D> {
|
|
fn dependencies(&self) -> Vec<Target> {
|
|
let local_target = |input| Target::wire(self.gate_index, input);
|
|
|
|
let mut deps = Vec::with_capacity(self.gate.num_power_bits + 1);
|
|
deps.push(local_target(self.gate.wire_base()));
|
|
for i in 0..self.gate.num_power_bits {
|
|
deps.push(local_target(self.gate.wire_power_bit(i)));
|
|
}
|
|
deps
|
|
}
|
|
|
|
fn run_once(&self, witness: &PartialWitness<F>, out_buffer: &mut GeneratedValues<F>) {
|
|
let local_wire = |input| Wire {
|
|
gate: self.gate_index,
|
|
input,
|
|
};
|
|
|
|
let get_local_wire = |input| witness.get_wire(local_wire(input));
|
|
|
|
let num_power_bits = self.gate.num_power_bits;
|
|
let base = get_local_wire(self.gate.wire_base());
|
|
|
|
let power_bits = (0..num_power_bits)
|
|
.map(|i| get_local_wire(self.gate.wire_power_bit(i)))
|
|
.collect::<Vec<_>>();
|
|
let mut intermediate_values = Vec::new();
|
|
|
|
let mut current_intermediate_value = F::ONE;
|
|
for i in 0..num_power_bits {
|
|
if power_bits[num_power_bits - i - 1] == F::ONE {
|
|
current_intermediate_value *= base;
|
|
}
|
|
intermediate_values.push(current_intermediate_value);
|
|
current_intermediate_value *= current_intermediate_value;
|
|
}
|
|
|
|
for i in 0..num_power_bits {
|
|
let intermediate_value_wire = local_wire(self.gate.wire_intermediate_value(i));
|
|
out_buffer.set_wire(intermediate_value_wire, intermediate_values[i]);
|
|
}
|
|
|
|
let output_wire = local_wire(self.gate.wire_output());
|
|
out_buffer.set_wire(output_wire, intermediate_values[num_power_bits - 1]);
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use std::marker::PhantomData;
|
|
|
|
use anyhow::Result;
|
|
use rand::Rng;
|
|
|
|
use crate::field::crandall_field::CrandallField;
|
|
use crate::field::extension_field::quartic::QuarticCrandallField;
|
|
use crate::field::field_types::Field;
|
|
use crate::gates::exponentiation::ExponentiationGate;
|
|
use crate::gates::gate::Gate;
|
|
use crate::gates::gate_testing::{test_eval_fns, test_low_degree};
|
|
use crate::hash::hash_types::HashOut;
|
|
use crate::plonk::circuit_data::CircuitConfig;
|
|
use crate::plonk::vars::EvaluationVars;
|
|
use crate::util::log2_ceil;
|
|
|
|
const MAX_POWER_BITS: usize = 17;
|
|
|
|
#[test]
|
|
fn wire_indices() {
|
|
let gate = ExponentiationGate::<CrandallField, 4> {
|
|
num_power_bits: 5,
|
|
_phantom: PhantomData,
|
|
};
|
|
|
|
assert_eq!(gate.wire_base(), 0);
|
|
assert_eq!(gate.wire_power_bit(0), 1);
|
|
assert_eq!(gate.wire_power_bit(4), 5);
|
|
assert_eq!(gate.wire_output(), 6);
|
|
assert_eq!(gate.wire_intermediate_value(0), 7);
|
|
assert_eq!(gate.wire_intermediate_value(4), 11);
|
|
}
|
|
|
|
#[test]
|
|
fn low_degree() {
|
|
let config = CircuitConfig {
|
|
num_wires: 120,
|
|
num_routed_wires: 30,
|
|
..CircuitConfig::large_config()
|
|
};
|
|
|
|
test_low_degree::<CrandallField, _, 4>(ExponentiationGate::new(config));
|
|
}
|
|
|
|
#[test]
|
|
fn eval_fns() -> Result<()> {
|
|
test_eval_fns::<CrandallField, _, 4>(ExponentiationGate::new(CircuitConfig::large_config()))
|
|
}
|
|
|
|
#[test]
|
|
fn test_gate_constraint() {
|
|
type F = CrandallField;
|
|
type FF = QuarticCrandallField;
|
|
const D: usize = 4;
|
|
|
|
/// Returns the local wires for an exponentiation gate given the base, power, and power bit
|
|
/// values.
|
|
fn get_wires(base: F, power: u64) -> Vec<FF> {
|
|
let mut power_bits = Vec::new();
|
|
let mut cur_power = power;
|
|
while cur_power > 0 {
|
|
power_bits.push(cur_power % 2);
|
|
cur_power /= 2;
|
|
}
|
|
|
|
let num_power_bits = power_bits.len();
|
|
|
|
let power_bits_F: Vec<_> = power_bits
|
|
.iter()
|
|
.map(|b| F::from_canonical_u64(*b))
|
|
.collect();
|
|
|
|
let mut v = Vec::new();
|
|
v.push(base);
|
|
v.extend(power_bits_F.clone());
|
|
|
|
let mut intermediate_values = Vec::new();
|
|
let mut current_intermediate_value = F::ONE;
|
|
for i in 0..num_power_bits {
|
|
if power_bits[num_power_bits - i - 1] == 1 {
|
|
current_intermediate_value *= base;
|
|
}
|
|
intermediate_values.push(current_intermediate_value);
|
|
current_intermediate_value *= current_intermediate_value;
|
|
}
|
|
let output_value = intermediate_values[num_power_bits - 1];
|
|
v.push(output_value);
|
|
v.extend(intermediate_values);
|
|
|
|
v.iter().map(|&x| x.into()).collect::<Vec<_>>()
|
|
}
|
|
|
|
let mut rng = rand::thread_rng();
|
|
|
|
let base = F::TWO;
|
|
let power = rng.gen::<usize>() % (1 << MAX_POWER_BITS);
|
|
let num_power_bits = log2_ceil(power + 1);
|
|
let gate = ExponentiationGate::<F, D> {
|
|
num_power_bits,
|
|
_phantom: PhantomData,
|
|
};
|
|
|
|
let vars = EvaluationVars {
|
|
local_constants: &[],
|
|
local_wires: &get_wires(base, power as u64),
|
|
public_inputs_hash: &HashOut::rand(),
|
|
};
|
|
assert!(
|
|
gate.eval_unfiltered(vars).iter().all(|x| x.is_zero()),
|
|
"Gate constraints are not satisfied."
|
|
);
|
|
}
|
|
}
|