plonky2/u32/src/gates/range_check_u32.rs
2022-10-25 10:50:40 +02:00

308 lines
11 KiB
Rust

use std::marker::PhantomData;
use plonky2::gates::gate::Gate;
use plonky2::gates::util::StridedConstraintConsumer;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::ext_target::ExtensionTarget;
use plonky2::iop::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
use plonky2::iop::target::Target;
use plonky2::iop::witness::{PartitionWitness, Witness};
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::plonk_common::{reduce_with_powers, reduce_with_powers_ext_circuit};
use plonky2::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
use plonky2_field::extension::Extendable;
use plonky2_field::types::Field;
use plonky2_util::ceil_div_usize;
/// A gate which can decompose a number into base B little-endian limbs.
#[derive(Copy, Clone, Debug)]
pub struct U32RangeCheckGate<F: RichField + Extendable<D>, const D: usize> {
pub num_input_limbs: usize,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> U32RangeCheckGate<F, D> {
pub fn new(num_input_limbs: usize) -> Self {
Self {
num_input_limbs,
_phantom: PhantomData,
}
}
pub const AUX_LIMB_BITS: usize = 2;
pub const BASE: usize = 1 << Self::AUX_LIMB_BITS;
fn aux_limbs_per_input_limb(&self) -> usize {
ceil_div_usize(32, Self::AUX_LIMB_BITS)
}
pub fn wire_ith_input_limb(&self, i: usize) -> usize {
debug_assert!(i < self.num_input_limbs);
i
}
pub fn wire_ith_input_limb_jth_aux_limb(&self, i: usize, j: usize) -> usize {
debug_assert!(i < self.num_input_limbs);
debug_assert!(j < self.aux_limbs_per_input_limb());
self.num_input_limbs + self.aux_limbs_per_input_limb() * i + j
}
}
impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for U32RangeCheckGate<F, D> {
fn id(&self) -> String {
format!("{self:?}")
}
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
let mut constraints = Vec::with_capacity(self.num_constraints());
let base = F::Extension::from_canonical_usize(Self::BASE);
for i in 0..self.num_input_limbs {
let input_limb = vars.local_wires[self.wire_ith_input_limb(i)];
let aux_limbs: Vec<_> = (0..self.aux_limbs_per_input_limb())
.map(|j| vars.local_wires[self.wire_ith_input_limb_jth_aux_limb(i, j)])
.collect();
let computed_sum = reduce_with_powers(&aux_limbs, base);
constraints.push(computed_sum - input_limb);
for aux_limb in aux_limbs {
constraints.push(
(0..Self::BASE)
.map(|i| aux_limb - F::Extension::from_canonical_usize(i))
.product(),
);
}
}
constraints
}
fn eval_unfiltered_base_one(
&self,
vars: EvaluationVarsBase<F>,
mut yield_constr: StridedConstraintConsumer<F>,
) {
let base = F::from_canonical_usize(Self::BASE);
for i in 0..self.num_input_limbs {
let input_limb = vars.local_wires[self.wire_ith_input_limb(i)];
let aux_limbs: Vec<_> = (0..self.aux_limbs_per_input_limb())
.map(|j| vars.local_wires[self.wire_ith_input_limb_jth_aux_limb(i, j)])
.collect();
let computed_sum = reduce_with_powers(&aux_limbs, base);
yield_constr.one(computed_sum - input_limb);
for aux_limb in aux_limbs {
yield_constr.one(
(0..Self::BASE)
.map(|i| aux_limb - F::from_canonical_usize(i))
.product(),
);
}
}
}
fn eval_unfiltered_circuit(
&self,
builder: &mut CircuitBuilder<F, D>,
vars: EvaluationTargets<D>,
) -> Vec<ExtensionTarget<D>> {
let mut constraints = Vec::with_capacity(self.num_constraints());
let base = builder.constant(F::from_canonical_usize(Self::BASE));
for i in 0..self.num_input_limbs {
let input_limb = vars.local_wires[self.wire_ith_input_limb(i)];
let aux_limbs: Vec<_> = (0..self.aux_limbs_per_input_limb())
.map(|j| vars.local_wires[self.wire_ith_input_limb_jth_aux_limb(i, j)])
.collect();
let computed_sum = reduce_with_powers_ext_circuit(builder, &aux_limbs, base);
constraints.push(builder.sub_extension(computed_sum, input_limb));
for aux_limb in aux_limbs {
constraints.push({
let mut acc = builder.one_extension();
(0..Self::BASE).for_each(|i| {
// We update our accumulator as:
// acc' = acc (x - i)
// = acc x + (-i) acc
// Since -i is constant, we can do this in one arithmetic_extension call.
let neg_i = -F::from_canonical_usize(i);
acc = builder.arithmetic_extension(F::ONE, neg_i, acc, aux_limb, acc)
});
acc
});
}
}
constraints
}
fn generators(&self, row: usize, _local_constants: &[F]) -> Vec<Box<dyn WitnessGenerator<F>>> {
let gen = U32RangeCheckGenerator { gate: *self, row };
vec![Box::new(gen.adapter())]
}
fn num_wires(&self) -> usize {
self.num_input_limbs * (1 + self.aux_limbs_per_input_limb())
}
fn num_constants(&self) -> usize {
0
}
// Bounded by the range-check (x-0)*(x-1)*...*(x-BASE+1).
fn degree(&self) -> usize {
Self::BASE
}
// 1 for checking the each sum of aux limbs, plus a range check for each aux limb.
fn num_constraints(&self) -> usize {
self.num_input_limbs * (1 + self.aux_limbs_per_input_limb())
}
}
#[derive(Debug)]
pub struct U32RangeCheckGenerator<F: RichField + Extendable<D>, const D: usize> {
gate: U32RangeCheckGate<F, D>,
row: usize,
}
impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
for U32RangeCheckGenerator<F, D>
{
fn dependencies(&self) -> Vec<Target> {
let num_input_limbs = self.gate.num_input_limbs;
(0..num_input_limbs)
.map(|i| Target::wire(self.row, self.gate.wire_ith_input_limb(i)))
.collect()
}
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
let num_input_limbs = self.gate.num_input_limbs;
for i in 0..num_input_limbs {
let sum_value = witness
.get_target(Target::wire(self.row, self.gate.wire_ith_input_limb(i)))
.to_canonical_u64() as u32;
let base = U32RangeCheckGate::<F, D>::BASE as u32;
let limbs = (0..self.gate.aux_limbs_per_input_limb())
.map(|j| Target::wire(self.row, self.gate.wire_ith_input_limb_jth_aux_limb(i, j)));
let limbs_value = (0..self.gate.aux_limbs_per_input_limb())
.scan(sum_value, |acc, _| {
let tmp = *acc % base;
*acc /= base;
Some(F::from_canonical_u32(tmp))
})
.collect::<Vec<_>>();
for (b, b_value) in limbs.zip(limbs_value) {
out_buffer.set_target(b, b_value);
}
}
}
}
#[cfg(test)]
mod tests {
use std::marker::PhantomData;
use anyhow::Result;
use itertools::unfold;
use plonky2::gates::gate::Gate;
use plonky2::gates::gate_testing::{test_eval_fns, test_low_degree};
use plonky2::hash::hash_types::HashOut;
use plonky2::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use plonky2::plonk::vars::EvaluationVars;
use plonky2_field::extension::quartic::QuarticExtension;
use plonky2_field::goldilocks_field::GoldilocksField;
use plonky2_field::types::Field;
use plonky2_util::ceil_div_usize;
use rand::Rng;
use crate::gates::range_check_u32::U32RangeCheckGate;
#[test]
fn low_degree() {
test_low_degree::<GoldilocksField, _, 4>(U32RangeCheckGate::new(8))
}
#[test]
fn eval_fns() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
test_eval_fns::<F, C, _, D>(U32RangeCheckGate::new(8))
}
fn test_gate_constraint(input_limbs: Vec<u64>) {
type F = GoldilocksField;
type FF = QuarticExtension<GoldilocksField>;
const D: usize = 4;
const AUX_LIMB_BITS: usize = 2;
const BASE: usize = 1 << AUX_LIMB_BITS;
const AUX_LIMBS_PER_INPUT_LIMB: usize = ceil_div_usize(32, AUX_LIMB_BITS);
fn get_wires(input_limbs: Vec<u64>) -> Vec<FF> {
let num_input_limbs = input_limbs.len();
let mut v = Vec::new();
for i in 0..num_input_limbs {
let input_limb = input_limbs[i];
let split_to_limbs = |mut val, num| {
unfold((), move |_| {
let ret = val % (BASE as u64);
val /= BASE as u64;
Some(ret)
})
.take(num)
.map(F::from_canonical_u64)
};
let mut aux_limbs: Vec<_> =
split_to_limbs(input_limb, AUX_LIMBS_PER_INPUT_LIMB).collect();
v.append(&mut aux_limbs);
}
input_limbs
.iter()
.cloned()
.map(F::from_canonical_u64)
.chain(v.iter().cloned())
.map(|x| x.into())
.collect()
}
let gate = U32RangeCheckGate::<F, D> {
num_input_limbs: 8,
_phantom: PhantomData,
};
let vars = EvaluationVars {
local_constants: &[],
local_wires: &get_wires(input_limbs),
public_inputs_hash: &HashOut::rand(),
};
assert!(
gate.eval_unfiltered(vars).iter().all(|x| x.is_zero()),
"Gate constraints are not satisfied."
);
}
#[test]
fn test_gate_constraint_good() {
let mut rng = rand::thread_rng();
let input_limbs: Vec<_> = (0..8).map(|_| rng.gen::<u32>() as u64).collect();
test_gate_constraint(input_limbs);
}
#[test]
#[should_panic]
fn test_gate_constraint_bad() {
let mut rng = rand::thread_rng();
let input_limbs: Vec<_> = (0..8).map(|_| rng.gen()).collect();
test_gate_constraint(input_limbs);
}
}