plonky2/evm/src/cpu/decode.rs
Jacqueline Nabaglo b98dd47820
Permission levels, jumps, traps (#653)
* Permission levels, jumps, traps

* Tests passing

* PR comments + documentation

* Docs + minor bugfixes

* Tests

* Use already-defined `stop` and `exception` (but renamed to `sys_stop`, `fault_exception`)

* Daniel comments
2022-08-16 09:46:10 -07:00

370 lines
14 KiB
Rust

use plonky2::field::extension::Extendable;
use plonky2::field::packed::PackedField;
use plonky2::field::types::Field;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::ext_target::ExtensionTarget;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::cpu::columns::{CpuColumnsView, COL_MAP};
#[derive(PartialEq, Eq)]
enum Availability {
All,
User,
Kernel,
}
use Availability::{All, Kernel, User};
/// List of opcode blocks
/// Each block corresponds to exactly one flag, and each flag corresponds to exactly one block.
/// Each block of opcodes:
/// - is contiguous,
/// - has a length that is a power of 2, and
/// - its start index is a multiple of its length (it is aligned).
/// These properties permit us to check if an opcode belongs to a block of length 2^n by checking
/// its top 8-n bits.
/// Additionally, each block can be made available only to the user, only to the kernel, or to
/// both. This is mainly useful for making some instructions kernel-only, while still decoding to
/// invalid for the user. We do this by making one kernel-only block and another user-only block.
/// The exception is the PANIC instruction which is user-only without a corresponding kernel block.
/// This makes the proof unverifiable when PANIC is executed in kernel mode, which is the intended
/// behavior.
const OPCODES: [(u8, usize, Availability, usize); 113] = [
// (start index of block, number of top bits to check (log2), availability, flag column)
(0x00, 0, All, COL_MAP.is_stop),
(0x01, 0, All, COL_MAP.is_add),
(0x02, 0, All, COL_MAP.is_mul),
(0x03, 0, All, COL_MAP.is_sub),
(0x04, 0, All, COL_MAP.is_div),
(0x05, 0, All, COL_MAP.is_sdiv),
(0x06, 0, All, COL_MAP.is_mod),
(0x07, 0, All, COL_MAP.is_smod),
(0x08, 0, All, COL_MAP.is_addmod),
(0x09, 0, All, COL_MAP.is_mulmod),
(0x0a, 0, All, COL_MAP.is_exp),
(0x0b, 0, All, COL_MAP.is_signextend),
(0x0c, 2, All, COL_MAP.is_invalid_0), // 0x0c-0x0f
(0x10, 0, All, COL_MAP.is_lt),
(0x11, 0, All, COL_MAP.is_gt),
(0x12, 0, All, COL_MAP.is_slt),
(0x13, 0, All, COL_MAP.is_sgt),
(0x14, 0, All, COL_MAP.is_eq),
(0x15, 0, All, COL_MAP.is_iszero),
(0x16, 0, All, COL_MAP.is_and),
(0x17, 0, All, COL_MAP.is_or),
(0x18, 0, All, COL_MAP.is_xor),
(0x19, 0, All, COL_MAP.is_not),
(0x1a, 0, All, COL_MAP.is_byte),
(0x1b, 0, All, COL_MAP.is_shl),
(0x1c, 0, All, COL_MAP.is_shr),
(0x1d, 0, All, COL_MAP.is_sar),
(0x1e, 1, All, COL_MAP.is_invalid_1), // 0x1e-0x1f
(0x20, 0, All, COL_MAP.is_keccak256),
(0x21, 0, All, COL_MAP.is_invalid_2),
(0x22, 1, All, COL_MAP.is_invalid_3), // 0x22-0x23
(0x24, 2, All, COL_MAP.is_invalid_4), // 0x24-0x27
(0x28, 3, All, COL_MAP.is_invalid_5), // 0x28-0x2f
(0x30, 0, All, COL_MAP.is_address),
(0x31, 0, All, COL_MAP.is_balance),
(0x32, 0, All, COL_MAP.is_origin),
(0x33, 0, All, COL_MAP.is_caller),
(0x34, 0, All, COL_MAP.is_callvalue),
(0x35, 0, All, COL_MAP.is_calldataload),
(0x36, 0, All, COL_MAP.is_calldatasize),
(0x37, 0, All, COL_MAP.is_calldatacopy),
(0x38, 0, All, COL_MAP.is_codesize),
(0x39, 0, All, COL_MAP.is_codecopy),
(0x3a, 0, All, COL_MAP.is_gasprice),
(0x3b, 0, All, COL_MAP.is_extcodesize),
(0x3c, 0, All, COL_MAP.is_extcodecopy),
(0x3d, 0, All, COL_MAP.is_returndatasize),
(0x3e, 0, All, COL_MAP.is_returndatacopy),
(0x3f, 0, All, COL_MAP.is_extcodehash),
(0x40, 0, All, COL_MAP.is_blockhash),
(0x41, 0, All, COL_MAP.is_coinbase),
(0x42, 0, All, COL_MAP.is_timestamp),
(0x43, 0, All, COL_MAP.is_number),
(0x44, 0, All, COL_MAP.is_difficulty),
(0x45, 0, All, COL_MAP.is_gaslimit),
(0x46, 0, All, COL_MAP.is_chainid),
(0x47, 0, All, COL_MAP.is_selfbalance),
(0x48, 0, All, COL_MAP.is_basefee),
(0x49, 0, User, COL_MAP.is_invalid_6),
(0x49, 0, Kernel, COL_MAP.is_prover_input),
(0x4a, 1, All, COL_MAP.is_invalid_7), // 0x4a-0x4b
(0x4c, 2, All, COL_MAP.is_invalid_8), // 0x4c-0x4f
(0x50, 0, All, COL_MAP.is_pop),
(0x51, 0, All, COL_MAP.is_mload),
(0x52, 0, All, COL_MAP.is_mstore),
(0x53, 0, All, COL_MAP.is_mstore8),
(0x54, 0, All, COL_MAP.is_sload),
(0x55, 0, All, COL_MAP.is_sstore),
(0x56, 0, All, COL_MAP.is_jump),
(0x57, 0, All, COL_MAP.is_jumpi),
(0x58, 0, All, COL_MAP.is_pc),
(0x59, 0, All, COL_MAP.is_msize),
(0x5a, 0, All, COL_MAP.is_gas),
(0x5b, 0, All, COL_MAP.is_jumpdest),
(0x5c, 2, User, COL_MAP.is_invalid_9), // 0x5c-5f
(0x5c, 0, Kernel, COL_MAP.is_get_state_root),
(0x5d, 0, Kernel, COL_MAP.is_set_state_root),
(0x5e, 0, Kernel, COL_MAP.is_get_receipt_root),
(0x5f, 0, Kernel, COL_MAP.is_set_receipt_root),
(0x60, 5, All, COL_MAP.is_push), // 0x60-0x7f
(0x80, 4, All, COL_MAP.is_dup), // 0x80-0x8f
(0x90, 4, All, COL_MAP.is_swap), // 0x90-0x9f
(0xa0, 0, All, COL_MAP.is_log0),
(0xa1, 0, All, COL_MAP.is_log1),
(0xa2, 0, All, COL_MAP.is_log2),
(0xa3, 0, All, COL_MAP.is_log3),
(0xa4, 0, All, COL_MAP.is_log4),
(0xa5, 0, User, COL_MAP.is_invalid_10),
// Opcode 0xa5 is PANIC when Kernel. Make the proof unverifiable by giving it no flag to decode to.
(0xa6, 1, All, COL_MAP.is_invalid_11), // 0xa6-0xa7
(0xa8, 3, All, COL_MAP.is_invalid_12), // 0xa8-0xaf
(0xb0, 4, All, COL_MAP.is_invalid_13), // 0xb0-0xbf
(0xc0, 5, All, COL_MAP.is_invalid_14), // 0xc0-0xdf
(0xe0, 4, All, COL_MAP.is_invalid_15), // 0xe0-0xef
(0xf0, 0, All, COL_MAP.is_create),
(0xf1, 0, All, COL_MAP.is_call),
(0xf2, 0, All, COL_MAP.is_callcode),
(0xf3, 0, All, COL_MAP.is_return),
(0xf4, 0, All, COL_MAP.is_delegatecall),
(0xf5, 0, All, COL_MAP.is_create2),
(0xf6, 1, User, COL_MAP.is_invalid_16), // 0xf6-0xf7
(0xf6, 0, Kernel, COL_MAP.is_get_context),
(0xf7, 0, Kernel, COL_MAP.is_set_context),
(0xf8, 1, User, COL_MAP.is_invalid_17), // 0xf8-0xf9
(0xf8, 0, Kernel, COL_MAP.is_consume_gas),
(0xf9, 0, Kernel, COL_MAP.is_exit_kernel),
(0xfa, 0, All, COL_MAP.is_staticcall),
(0xfb, 0, User, COL_MAP.is_invalid_18),
(0xfb, 0, Kernel, COL_MAP.is_mload_general),
(0xfc, 0, User, COL_MAP.is_invalid_19),
(0xfc, 0, Kernel, COL_MAP.is_mstore_general),
(0xfd, 0, All, COL_MAP.is_revert),
(0xfe, 0, All, COL_MAP.is_invalid_20),
(0xff, 0, All, COL_MAP.is_selfdestruct),
];
pub fn generate<F: RichField>(lv: &mut CpuColumnsView<F>) {
let cycle_filter = lv.is_cpu_cycle;
if cycle_filter == F::ZERO {
// These columns cannot be shared.
lv.is_eq = F::ZERO;
lv.is_iszero = F::ZERO;
return;
}
// This assert is not _strictly_ necessary, but I include it as a sanity check.
assert_eq!(cycle_filter, F::ONE, "cycle_filter should be 0 or 1");
let opcode = lv.opcode.to_canonical_u64();
assert!(opcode < 256, "opcode should be in {{0, ..., 255}}");
let opcode = opcode as u8;
for (i, bit) in lv.opcode_bits.iter_mut().enumerate() {
*bit = F::from_bool(opcode & (1 << i) != 0);
}
let top_bits: [u8; 9] = [
0,
opcode & 0x80,
opcode & 0xc0,
opcode & 0xe0,
opcode & 0xf0,
opcode & 0xf8,
opcode & 0xfc,
opcode & 0xfe,
opcode,
];
let kernel = lv.is_kernel_mode.to_canonical_u64();
assert!(kernel <= 1);
let kernel = kernel != 0;
for (oc, block_length, availability, col) in OPCODES {
let available = match availability {
All => true,
User => !kernel,
Kernel => kernel,
};
let opcode_match = top_bits[8 - block_length] == oc;
lv[col] = F::from_bool(available && opcode_match);
}
}
/// Break up an opcode (which is 8 bits long) into its eight bits.
const fn bits_from_opcode(opcode: u8) -> [bool; 8] {
[
opcode & (1 << 0) != 0,
opcode & (1 << 1) != 0,
opcode & (1 << 2) != 0,
opcode & (1 << 3) != 0,
opcode & (1 << 4) != 0,
opcode & (1 << 5) != 0,
opcode & (1 << 6) != 0,
opcode & (1 << 7) != 0,
]
}
pub fn eval_packed_generic<P: PackedField>(
lv: &CpuColumnsView<P>,
yield_constr: &mut ConstraintConsumer<P>,
) {
let cycle_filter = lv.is_cpu_cycle;
// Ensure that the kernel flag is valid (either 0 or 1).
let kernel_mode = lv.is_kernel_mode;
yield_constr.constraint(cycle_filter * kernel_mode * (kernel_mode - P::ONES));
// Ensure that the opcode bits are valid: each has to be either 0 or 1, and they must match
// the opcode. Note that this also implicitly range-checks the opcode.
let bits = lv.opcode_bits;
// First check that the bits are either 0 or 1.
for bit in bits {
yield_constr.constraint(cycle_filter * bit * (bit - P::ONES));
}
// Now check that they match the opcode.
{
let opcode = lv.opcode;
let reconstructed_opcode: P = bits
.into_iter()
.enumerate()
.map(|(i, bit)| bit * P::Scalar::from_canonical_u64(1 << i))
.sum();
yield_constr.constraint(cycle_filter * (opcode - reconstructed_opcode));
}
// Check that the instruction flags are valid.
// First, check that they are all either 0 or 1.
for (_, _, _, flag_col) in OPCODES {
let flag = lv[flag_col];
yield_constr.constraint(cycle_filter * flag * (flag - P::ONES));
}
// Now check that exactly one is 1.
let flag_sum: P = OPCODES
.into_iter()
.map(|(_, _, _, flag_col)| lv[flag_col])
.sum();
yield_constr.constraint(cycle_filter * (P::ONES - flag_sum));
// Finally, classify all opcodes, together with the kernel flag, into blocks
for (oc, block_length, availability, col) in OPCODES {
// 0 if the block/flag is available to us (is always available, is user-only and we are in
// user mode, or kernel-only and we are in kernel mode) and 1 otherwise.
let unavailable = match availability {
All => P::ZEROS,
User => kernel_mode,
Kernel => P::ONES - kernel_mode,
};
// 0 if all the opcode bits match, and something in {1, ..., 8}, otherwise.
let opcode_mismatch: P = bits
.into_iter()
.zip(bits_from_opcode(oc))
.rev()
.take(block_length + 1)
.map(|(row_bit, flag_bit)| match flag_bit {
// 1 if the bit does not match, and 0 otherwise
false => row_bit,
true => P::ONES - row_bit,
})
.sum();
// If unavailable + opcode_mismatch is 0, then the opcode bits all match and we are in the
// correct mode.
let constr = lv[col] * (unavailable + opcode_mismatch);
yield_constr.constraint(cycle_filter * constr);
}
}
pub fn eval_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
builder: &mut plonky2::plonk::circuit_builder::CircuitBuilder<F, D>,
lv: &CpuColumnsView<ExtensionTarget<D>>,
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
) {
let one = builder.one_extension();
let cycle_filter = lv.is_cpu_cycle;
// Ensure that the kernel flag is valid (either 0 or 1).
let kernel_mode = lv.is_kernel_mode;
{
let constr = builder.mul_sub_extension(kernel_mode, kernel_mode, kernel_mode);
let constr = builder.mul_extension(cycle_filter, constr);
yield_constr.constraint(builder, constr);
}
// Ensure that the opcode bits are valid: each has to be either 0 or 1, and they must match
// the opcode. Note that this also implicitly range-checks the opcode.
let bits = lv.opcode_bits;
// First check that the bits are either 0 or 1.
for bit in bits {
let constr = builder.mul_sub_extension(bit, bit, bit);
let constr = builder.mul_extension(cycle_filter, constr);
yield_constr.constraint(builder, constr);
}
// Now check that they match the opcode.
{
let opcode = lv.opcode;
let reconstructed_opcode =
bits.into_iter()
.enumerate()
.fold(builder.zero_extension(), |cumul, (i, bit)| {
builder.mul_const_add_extension(F::from_canonical_u64(1 << i), bit, cumul)
});
let diff = builder.sub_extension(opcode, reconstructed_opcode);
let constr = builder.mul_extension(cycle_filter, diff);
yield_constr.constraint(builder, constr);
}
// Check that the instruction flags are valid.
// First, check that they are all either 0 or 1.
for (_, _, _, flag_col) in OPCODES {
let flag = lv[flag_col];
let constr = builder.mul_sub_extension(flag, flag, flag);
let constr = builder.mul_extension(cycle_filter, constr);
yield_constr.constraint(builder, constr);
}
// Now check that exactly one is 1.
{
let mut constr = builder.one_extension();
for (_, _, _, flag_col) in OPCODES {
let flag = lv[flag_col];
constr = builder.sub_extension(constr, flag);
}
constr = builder.mul_extension(cycle_filter, constr);
yield_constr.constraint(builder, constr);
}
// Finally, classify all opcodes, together with the kernel flag, into blocks
for (oc, block_length, availability, col) in OPCODES {
// 0 if the block/flag is available to us (is always available, is user-only and we are in
// user mode, or kernel-only and we are in kernel mode) and 1 otherwise.
let unavailable = match availability {
All => builder.zero_extension(),
User => kernel_mode,
Kernel => builder.sub_extension(one, kernel_mode),
};
// 0 if all the opcode bits match, and something in {1, ..., 8}, otherwise.
let opcode_mismatch = bits
.into_iter()
.zip(bits_from_opcode(oc))
.rev()
.take(block_length + 1)
.fold(builder.zero_extension(), |cumul, (row_bit, flag_bit)| {
let to_add = match flag_bit {
false => row_bit,
true => builder.sub_extension(one, row_bit),
};
builder.add_extension(cumul, to_add)
});
// If unavailable + opcode_mismatch is 0, then the opcode bits all match and we are in the
// correct mode.
let constr = builder.add_extension(unavailable, opcode_mismatch);
let constr = builder.mul_extension(lv[col], constr);
let constr = builder.mul_extension(cycle_filter, constr);
yield_constr.constraint(builder, constr);
}
}