plonky2/evm/src/all_stark.rs
2022-07-28 17:30:20 -07:00

436 lines
15 KiB
Rust

use plonky2::field::extension::Extendable;
use plonky2::field::types::Field;
use plonky2::hash::hash_types::RichField;
use crate::config::StarkConfig;
use crate::cpu::cpu_stark;
use crate::cpu::cpu_stark::CpuStark;
use crate::cross_table_lookup::{CrossTableLookup, TableWithColumns};
use crate::keccak::keccak_stark;
use crate::keccak::keccak_stark::KeccakStark;
use crate::logic;
use crate::logic::LogicStark;
use crate::memory::memory_stark::MemoryStark;
use crate::memory::{memory_stark, NUM_CHANNELS};
use crate::stark::Stark;
#[derive(Clone)]
pub struct AllStark<F: RichField + Extendable<D>, const D: usize> {
pub cpu_stark: CpuStark<F, D>,
pub keccak_stark: KeccakStark<F, D>,
pub logic_stark: LogicStark<F, D>,
pub memory_stark: MemoryStark<F, D>,
pub cross_table_lookups: Vec<CrossTableLookup<F>>,
}
impl<F: RichField + Extendable<D>, const D: usize> Default for AllStark<F, D> {
fn default() -> Self {
Self {
cpu_stark: CpuStark::default(),
keccak_stark: KeccakStark::default(),
logic_stark: LogicStark::default(),
memory_stark: MemoryStark::default(),
cross_table_lookups: all_cross_table_lookups(),
}
}
}
impl<F: RichField + Extendable<D>, const D: usize> AllStark<F, D> {
pub(crate) fn nums_permutation_zs(&self, config: &StarkConfig) -> Vec<usize> {
let ans = vec![
self.cpu_stark.num_permutation_batches(config),
self.keccak_stark.num_permutation_batches(config),
self.logic_stark.num_permutation_batches(config),
self.memory_stark.num_permutation_batches(config),
];
debug_assert_eq!(ans.len(), Table::num_tables());
ans
}
pub(crate) fn permutation_batch_sizes(&self) -> Vec<usize> {
let ans = vec![
self.cpu_stark.permutation_batch_size(),
self.keccak_stark.permutation_batch_size(),
self.logic_stark.permutation_batch_size(),
self.memory_stark.permutation_batch_size(),
];
debug_assert_eq!(ans.len(), Table::num_tables());
ans
}
}
#[derive(Debug, Copy, Clone)]
pub enum Table {
Cpu = 0,
Keccak = 1,
Logic = 2,
Memory = 3,
}
impl Table {
pub(crate) fn num_tables() -> usize {
Table::Memory as usize + 1
}
}
#[allow(unused)] // TODO: Should be used soon.
pub(crate) fn all_cross_table_lookups<F: Field>() -> Vec<CrossTableLookup<F>> {
let mut cross_table_lookups = vec![ctl_keccak(), ctl_logic()];
cross_table_lookups.extend((0..NUM_CHANNELS).map(ctl_memory));
cross_table_lookups
}
fn ctl_keccak<F: Field>() -> CrossTableLookup<F> {
CrossTableLookup::new(
vec![TableWithColumns::new(
Table::Cpu,
cpu_stark::ctl_data_keccak(),
Some(cpu_stark::ctl_filter_keccak()),
)],
TableWithColumns::new(
Table::Keccak,
keccak_stark::ctl_data(),
Some(keccak_stark::ctl_filter()),
),
None,
)
}
fn ctl_logic<F: Field>() -> CrossTableLookup<F> {
CrossTableLookup::new(
vec![TableWithColumns::new(
Table::Cpu,
cpu_stark::ctl_data_logic(),
Some(cpu_stark::ctl_filter_logic()),
)],
TableWithColumns::new(Table::Logic, logic::ctl_data(), Some(logic::ctl_filter())),
None,
)
}
fn ctl_memory<F: Field>(channel: usize) -> CrossTableLookup<F> {
CrossTableLookup::new(
vec![TableWithColumns::new(
Table::Cpu,
cpu_stark::ctl_data_memory(channel),
Some(cpu_stark::ctl_filter_memory(channel)),
)],
TableWithColumns::new(
Table::Memory,
memory_stark::ctl_data(),
Some(memory_stark::ctl_filter(channel)),
),
None,
)
}
#[cfg(test)]
mod tests {
use std::borrow::BorrowMut;
use anyhow::Result;
use ethereum_types::U256;
use itertools::Itertools;
use plonky2::field::polynomial::PolynomialValues;
use plonky2::field::types::{Field, PrimeField64};
use plonky2::iop::witness::PartialWitness;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::circuit_data::CircuitConfig;
use plonky2::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use plonky2::util::timing::TimingTree;
use rand::{thread_rng, Rng};
use crate::all_stark::AllStark;
use crate::config::StarkConfig;
use crate::cpu::cpu_stark::CpuStark;
use crate::cpu::kernel::aggregator::KERNEL;
use crate::cross_table_lookup::testutils::check_ctls;
use crate::keccak::keccak_stark::{KeccakStark, NUM_INPUTS, NUM_ROUNDS};
use crate::logic::{self, LogicStark, Operation};
use crate::memory::memory_stark::tests::generate_random_memory_ops;
use crate::memory::memory_stark::MemoryStark;
use crate::memory::NUM_CHANNELS;
use crate::proof::AllProof;
use crate::prover::prove;
use crate::recursive_verifier::{
add_virtual_all_proof, set_all_proof_target, verify_proof_circuit,
};
use crate::stark::Stark;
use crate::util::{limb_from_bits_le, trace_rows_to_poly_values};
use crate::verifier::verify_proof;
use crate::{cpu, keccak, memory};
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
fn make_keccak_trace<R: Rng>(
num_keccak_perms: usize,
keccak_stark: &KeccakStark<F, D>,
rng: &mut R,
) -> Vec<PolynomialValues<F>> {
let keccak_inputs = (0..num_keccak_perms)
.map(|_| [0u64; NUM_INPUTS].map(|_| rng.gen()))
.collect_vec();
keccak_stark.generate_trace(keccak_inputs)
}
fn make_logic_trace<R: Rng>(
num_rows: usize,
logic_stark: &LogicStark<F, D>,
rng: &mut R,
) -> Vec<PolynomialValues<F>> {
let all_ops = [logic::Op::And, logic::Op::Or, logic::Op::Xor];
let ops = (0..num_rows)
.map(|_| {
let op = all_ops[rng.gen_range(0..all_ops.len())];
let input0 = U256(rng.gen());
let input1 = U256(rng.gen());
Operation::new(op, input0, input1)
})
.collect();
logic_stark.generate_trace(ops)
}
fn make_memory_trace<R: Rng>(
num_memory_ops: usize,
memory_stark: &MemoryStark<F, D>,
rng: &mut R,
) -> (Vec<PolynomialValues<F>>, usize) {
let memory_ops = generate_random_memory_ops(num_memory_ops, rng);
let trace = memory_stark.generate_trace(memory_ops);
let num_ops = trace[0].values.len();
(trace, num_ops)
}
fn make_cpu_trace(
num_keccak_perms: usize,
num_logic_rows: usize,
num_memory_ops: usize,
cpu_stark: &CpuStark<F, D>,
keccak_trace: &[PolynomialValues<F>],
logic_trace: &[PolynomialValues<F>],
memory_trace: &mut [PolynomialValues<F>],
) -> Vec<PolynomialValues<F>> {
let keccak_input_limbs: Vec<[F; 2 * NUM_INPUTS]> = (0..num_keccak_perms)
.map(|i| {
(0..2 * NUM_INPUTS)
.map(|j| {
keccak::columns::reg_input_limb(j)
.eval_table(keccak_trace, (i + 1) * NUM_ROUNDS - 1)
})
.collect::<Vec<_>>()
.try_into()
.unwrap()
})
.collect();
let keccak_output_limbs: Vec<[F; 2 * NUM_INPUTS]> = (0..num_keccak_perms)
.map(|i| {
(0..2 * NUM_INPUTS)
.map(|j| {
keccak_trace[keccak::columns::reg_output_limb(j)].values
[(i + 1) * NUM_ROUNDS - 1]
})
.collect::<Vec<_>>()
.try_into()
.unwrap()
})
.collect();
let mut cpu_trace_rows: Vec<[F; CpuStark::<F, D>::COLUMNS]> = vec![];
let mut bootstrap_row: cpu::columns::CpuColumnsView<F> =
[F::ZERO; CpuStark::<F, D>::COLUMNS].into();
bootstrap_row.is_bootstrap_kernel = F::ONE;
cpu_trace_rows.push(bootstrap_row.into());
for i in 0..num_keccak_perms {
let mut row: cpu::columns::CpuColumnsView<F> =
[F::ZERO; CpuStark::<F, D>::COLUMNS].into();
row.is_keccak = F::ONE;
let keccak = row.general.keccak_mut();
for j in 0..2 * NUM_INPUTS {
keccak.input_limbs[j] = keccak_input_limbs[i][j];
keccak.output_limbs[j] = keccak_output_limbs[i][j];
}
cpu_stark.generate(row.borrow_mut());
cpu_trace_rows.push(row.into());
}
for i in 0..num_logic_rows {
let mut row: cpu::columns::CpuColumnsView<F> =
[F::ZERO; CpuStark::<F, D>::COLUMNS].into();
row.is_cpu_cycle = F::ONE;
row.program_counter = F::from_canonical_usize(i);
row.opcode = [
(logic::columns::IS_AND, 0x16),
(logic::columns::IS_OR, 0x17),
(logic::columns::IS_XOR, 0x18),
]
.into_iter()
.map(|(col, opcode)| logic_trace[col].values[i] * F::from_canonical_u64(opcode))
.sum();
let logic = row.general.logic_mut();
let input0_bit_cols = logic::columns::limb_bit_cols_for_input(logic::columns::INPUT0);
for (col_cpu, limb_cols_logic) in logic.input0.iter_mut().zip(input0_bit_cols) {
*col_cpu = limb_from_bits_le(limb_cols_logic.map(|col| logic_trace[col].values[i]));
}
let input1_bit_cols = logic::columns::limb_bit_cols_for_input(logic::columns::INPUT1);
for (col_cpu, limb_cols_logic) in logic.input1.iter_mut().zip(input1_bit_cols) {
*col_cpu = limb_from_bits_le(limb_cols_logic.map(|col| logic_trace[col].values[i]));
}
for (col_cpu, col_logic) in logic.output.iter_mut().zip(logic::columns::RESULT) {
*col_cpu = logic_trace[col_logic].values[i];
}
cpu_stark.generate(row.borrow_mut());
cpu_trace_rows.push(row.into());
}
for i in 0..num_memory_ops {
let mem_timestamp: usize = memory_trace[memory::columns::TIMESTAMP].values[i]
.to_canonical_u64()
.try_into()
.unwrap();
let clock = mem_timestamp / NUM_CHANNELS;
let channel = mem_timestamp % NUM_CHANNELS;
let is_padding_row = (0..NUM_CHANNELS)
.map(|c| memory_trace[memory::columns::is_channel(c)].values[i])
.all(|x| x == F::ZERO);
if !is_padding_row {
let row: &mut cpu::columns::CpuColumnsView<F> = cpu_trace_rows[clock].borrow_mut();
row.mem_channel_used[channel] = F::ONE;
row.clock = F::from_canonical_usize(clock);
row.mem_is_read[channel] = memory_trace[memory::columns::IS_READ].values[i];
row.mem_addr_context[channel] =
memory_trace[memory::columns::ADDR_CONTEXT].values[i];
row.mem_addr_segment[channel] =
memory_trace[memory::columns::ADDR_SEGMENT].values[i];
row.mem_addr_virtual[channel] =
memory_trace[memory::columns::ADDR_VIRTUAL].values[i];
for j in 0..8 {
row.mem_value[channel][j] =
memory_trace[memory::columns::value_limb(j)].values[i];
}
}
}
// Pad to a power of two.
for i in 0..cpu_trace_rows.len().next_power_of_two() - cpu_trace_rows.len() {
let mut row: cpu::columns::CpuColumnsView<F> =
[F::ZERO; CpuStark::<F, D>::COLUMNS].into();
row.is_cpu_cycle = F::ONE;
row.program_counter = F::from_canonical_usize(i + num_logic_rows);
cpu_stark.generate(row.borrow_mut());
cpu_trace_rows.push(row.into());
}
// Ensure we finish in a halted state.
{
let num_rows = cpu_trace_rows.len();
let halt_label = F::from_canonical_usize(KERNEL.global_labels["halt_pc0"]);
let last_row: &mut cpu::columns::CpuColumnsView<F> =
cpu_trace_rows[num_rows - 1].borrow_mut();
last_row.program_counter = halt_label;
}
trace_rows_to_poly_values(cpu_trace_rows)
}
fn get_proof(config: &StarkConfig) -> Result<(AllStark<F, D>, AllProof<F, C, D>)> {
let all_stark = AllStark::default();
let num_logic_rows = 62;
let num_memory_ops = 1 << 5;
let mut rng = thread_rng();
let num_keccak_perms = 2;
let keccak_trace = make_keccak_trace(num_keccak_perms, &all_stark.keccak_stark, &mut rng);
let logic_trace = make_logic_trace(num_logic_rows, &all_stark.logic_stark, &mut rng);
let mem_trace = make_memory_trace(num_memory_ops, &all_stark.memory_stark, &mut rng);
let mut memory_trace = mem_trace.0;
let num_memory_ops = mem_trace.1;
let cpu_trace = make_cpu_trace(
num_keccak_perms,
num_logic_rows,
num_memory_ops,
&all_stark.cpu_stark,
&keccak_trace,
&logic_trace,
&mut memory_trace,
);
let traces = vec![cpu_trace, keccak_trace, logic_trace, memory_trace];
check_ctls(&traces, &all_stark.cross_table_lookups);
let proof = prove::<F, C, D>(
&all_stark,
config,
traces,
vec![vec![]; 4],
&mut TimingTree::default(),
)?;
Ok((all_stark, proof))
}
#[test]
fn test_all_stark() -> Result<()> {
let config = StarkConfig::standard_fast_config();
let (all_stark, proof) = get_proof(&config)?;
verify_proof(all_stark, proof, &config)
}
#[test]
fn test_all_stark_recursive_verifier() -> Result<()> {
init_logger();
let config = StarkConfig::standard_fast_config();
let (all_stark, proof) = get_proof(&config)?;
verify_proof(all_stark.clone(), proof.clone(), &config)?;
recursive_proof(all_stark, proof, &config, true)
}
fn recursive_proof(
inner_all_stark: AllStark<F, D>,
inner_proof: AllProof<F, C, D>,
inner_config: &StarkConfig,
print_gate_counts: bool,
) -> Result<()> {
let circuit_config = CircuitConfig::standard_recursion_config();
let mut builder = CircuitBuilder::<F, D>::new(circuit_config);
let mut pw = PartialWitness::new();
let degree_bits = inner_proof.degree_bits(inner_config);
let nums_ctl_zs = inner_proof.nums_ctl_zs();
let pt = add_virtual_all_proof(
&mut builder,
&inner_all_stark,
inner_config,
&degree_bits,
&nums_ctl_zs,
);
set_all_proof_target(&mut pw, &pt, &inner_proof, builder.zero());
verify_proof_circuit::<F, C, D>(&mut builder, inner_all_stark, pt, inner_config);
if print_gate_counts {
builder.print_gate_counts(0);
}
let data = builder.build::<C>();
let proof = data.prove(pw)?;
data.verify(proof)
}
fn init_logger() {
let _ = env_logger::builder().format_timestamp(None).try_init();
}
}