plonky2/evm/src/cpu/contextops.rs
2023-01-14 21:18:58 -08:00

231 lines
9.4 KiB
Rust

use plonky2::field::extension::Extendable;
use plonky2::field::packed::PackedField;
use plonky2::field::types::Field;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::ext_target::ExtensionTarget;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::cpu::columns::CpuColumnsView;
use crate::cpu::kernel::constants::context_metadata::ContextMetadata;
use crate::cpu::membus::NUM_GP_CHANNELS;
use crate::memory::segments::Segment;
fn eval_packed_get<P: PackedField>(
lv: &CpuColumnsView<P>,
yield_constr: &mut ConstraintConsumer<P>,
) {
let filter = lv.op.get_context;
let push_channel = lv.mem_channels[NUM_GP_CHANNELS - 1];
yield_constr.constraint(filter * (push_channel.value[0] - lv.context));
for &limb in &push_channel.value[1..] {
yield_constr.constraint(filter * limb);
}
}
fn eval_ext_circuit_get<F: RichField + Extendable<D>, const D: usize>(
builder: &mut CircuitBuilder<F, D>,
lv: &CpuColumnsView<ExtensionTarget<D>>,
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
) {
let filter = lv.op.get_context;
let push_channel = lv.mem_channels[NUM_GP_CHANNELS - 1];
{
let diff = builder.sub_extension(push_channel.value[0], lv.context);
let constr = builder.mul_extension(filter, diff);
yield_constr.constraint(builder, constr);
}
for &limb in &push_channel.value[1..] {
let constr = builder.mul_extension(filter, limb);
yield_constr.constraint(builder, constr);
}
}
fn eval_packed_set<P: PackedField>(
lv: &CpuColumnsView<P>,
nv: &CpuColumnsView<P>,
yield_constr: &mut ConstraintConsumer<P>,
) {
let filter = lv.op.set_context;
let pop_channel = lv.mem_channels[0];
let write_old_sp_channel = lv.mem_channels[1];
let read_new_sp_channel = lv.mem_channels[2];
let stack_segment = P::Scalar::from_canonical_u64(Segment::Stack as u64);
let ctx_metadata_segment = P::Scalar::from_canonical_u64(Segment::ContextMetadata as u64);
let stack_size_field = P::Scalar::from_canonical_u64(ContextMetadata::StackSize as u64);
let local_sp_dec = lv.stack_len - P::ONES;
// The next row's context is read from memory channel 0.
yield_constr.constraint(filter * (pop_channel.value[0] - nv.context));
yield_constr.constraint(filter * (pop_channel.used - P::ONES));
yield_constr.constraint(filter * (pop_channel.is_read - P::ONES));
yield_constr.constraint(filter * (pop_channel.addr_context - lv.context));
yield_constr.constraint(filter * (pop_channel.addr_segment - stack_segment));
yield_constr.constraint(filter * (pop_channel.addr_virtual - local_sp_dec));
// The old SP is decremented (since the new context was popped) and written to memory.
yield_constr.constraint(filter * (write_old_sp_channel.value[0] - local_sp_dec));
for limb in &write_old_sp_channel.value[1..] {
yield_constr.constraint(filter * *limb);
}
yield_constr.constraint(filter * (write_old_sp_channel.used - P::ONES));
yield_constr.constraint(filter * write_old_sp_channel.is_read);
yield_constr.constraint(filter * (write_old_sp_channel.addr_context - lv.context));
yield_constr.constraint(filter * (write_old_sp_channel.addr_segment - ctx_metadata_segment));
yield_constr.constraint(filter * (write_old_sp_channel.addr_virtual - stack_size_field));
// The new SP is loaded from memory.
yield_constr.constraint(filter * (read_new_sp_channel.value[0] - nv.stack_len));
yield_constr.constraint(filter * (read_new_sp_channel.used - P::ONES));
yield_constr.constraint(filter * (read_new_sp_channel.is_read - P::ONES));
yield_constr.constraint(filter * (read_new_sp_channel.addr_context - nv.context));
yield_constr.constraint(filter * (read_new_sp_channel.addr_segment - ctx_metadata_segment));
yield_constr.constraint(filter * (read_new_sp_channel.addr_virtual - stack_size_field));
// Disable unused memory channels
for &channel in &lv.mem_channels[3..] {
yield_constr.constraint(filter * channel.used);
}
}
fn eval_ext_circuit_set<F: RichField + Extendable<D>, const D: usize>(
builder: &mut CircuitBuilder<F, D>,
lv: &CpuColumnsView<ExtensionTarget<D>>,
nv: &CpuColumnsView<ExtensionTarget<D>>,
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
) {
let filter = lv.op.set_context;
let pop_channel = lv.mem_channels[0];
let write_old_sp_channel = lv.mem_channels[1];
let read_new_sp_channel = lv.mem_channels[2];
let stack_segment =
builder.constant_extension(F::Extension::from_canonical_u32(Segment::Stack as u32));
let ctx_metadata_segment = builder.constant_extension(F::Extension::from_canonical_u32(
Segment::ContextMetadata as u32,
));
let stack_size_field = builder.constant_extension(F::Extension::from_canonical_u32(
ContextMetadata::StackSize as u32,
));
let one = builder.one_extension();
let local_sp_dec = builder.sub_extension(lv.stack_len, one);
// The next row's context is read from memory channel 0.
{
let diff = builder.sub_extension(pop_channel.value[0], nv.context);
let constr = builder.mul_extension(filter, diff);
yield_constr.constraint(builder, constr);
}
{
let constr = builder.mul_sub_extension(filter, pop_channel.used, filter);
yield_constr.constraint(builder, constr);
}
{
let constr = builder.mul_sub_extension(filter, pop_channel.is_read, filter);
yield_constr.constraint(builder, constr);
}
{
let diff = builder.sub_extension(pop_channel.addr_context, lv.context);
let constr = builder.mul_extension(filter, diff);
yield_constr.constraint(builder, constr);
}
{
let diff = builder.sub_extension(pop_channel.addr_segment, stack_segment);
let constr = builder.mul_extension(filter, diff);
yield_constr.constraint(builder, constr);
}
{
let diff = builder.sub_extension(pop_channel.addr_virtual, local_sp_dec);
let constr = builder.mul_extension(filter, diff);
yield_constr.constraint(builder, constr);
}
// The old SP is decremented (since the new context was popped) and written to memory.
{
let diff = builder.sub_extension(write_old_sp_channel.value[0], local_sp_dec);
let constr = builder.mul_extension(filter, diff);
yield_constr.constraint(builder, constr);
}
for limb in &write_old_sp_channel.value[1..] {
let constr = builder.mul_extension(filter, *limb);
yield_constr.constraint(builder, constr);
}
{
let constr = builder.mul_sub_extension(filter, write_old_sp_channel.used, filter);
yield_constr.constraint(builder, constr);
}
{
let constr = builder.mul_extension(filter, write_old_sp_channel.is_read);
yield_constr.constraint(builder, constr);
}
{
let diff = builder.sub_extension(write_old_sp_channel.addr_context, lv.context);
let constr = builder.mul_extension(filter, diff);
yield_constr.constraint(builder, constr);
}
{
let diff = builder.sub_extension(write_old_sp_channel.addr_segment, ctx_metadata_segment);
let constr = builder.mul_extension(filter, diff);
yield_constr.constraint(builder, constr);
}
{
let diff = builder.sub_extension(write_old_sp_channel.addr_virtual, stack_size_field);
let constr = builder.mul_extension(filter, diff);
yield_constr.constraint(builder, constr);
}
// The new SP is loaded from memory.
{
let diff = builder.sub_extension(read_new_sp_channel.value[0], nv.stack_len);
let constr = builder.mul_extension(filter, diff);
yield_constr.constraint(builder, constr);
}
{
let constr = builder.mul_sub_extension(filter, read_new_sp_channel.used, filter);
yield_constr.constraint(builder, constr);
}
{
let constr = builder.mul_sub_extension(filter, read_new_sp_channel.is_read, filter);
yield_constr.constraint(builder, constr);
}
{
let diff = builder.sub_extension(read_new_sp_channel.addr_context, nv.context);
let constr = builder.mul_extension(filter, diff);
yield_constr.constraint(builder, constr);
}
{
let diff = builder.sub_extension(read_new_sp_channel.addr_segment, ctx_metadata_segment);
let constr = builder.mul_extension(filter, diff);
yield_constr.constraint(builder, constr);
}
{
let diff = builder.sub_extension(read_new_sp_channel.addr_virtual, stack_size_field);
let constr = builder.mul_extension(filter, diff);
yield_constr.constraint(builder, constr);
}
// Disable unused memory channels
for &channel in &lv.mem_channels[3..] {
let constr = builder.mul_extension(filter, channel.used);
yield_constr.constraint(builder, constr);
}
}
pub fn eval_packed<P: PackedField>(
lv: &CpuColumnsView<P>,
nv: &CpuColumnsView<P>,
yield_constr: &mut ConstraintConsumer<P>,
) {
eval_packed_get(lv, yield_constr);
eval_packed_set(lv, nv, yield_constr);
}
pub fn eval_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
builder: &mut CircuitBuilder<F, D>,
lv: &CpuColumnsView<ExtensionTarget<D>>,
nv: &CpuColumnsView<ExtensionTarget<D>>,
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
) {
eval_ext_circuit_get(builder, lv, yield_constr);
eval_ext_circuit_set(builder, lv, nv, yield_constr);
}