plonky2/starky/src/fibonacci_stark.rs

272 lines
9.6 KiB
Rust

use alloc::vec;
use alloc::vec::Vec;
use core::marker::PhantomData;
use plonky2::field::extension::{Extendable, FieldExtension};
use plonky2::field::packed::PackedField;
use plonky2::field::polynomial::PolynomialValues;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::ext_target::ExtensionTarget;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::evaluation_frame::{StarkEvaluationFrame, StarkFrame};
use crate::permutation::PermutationPair;
use crate::stark::Stark;
use crate::util::trace_rows_to_poly_values;
/// Toy STARK system used for testing.
/// Computes a Fibonacci sequence with state `[x0, x1, i, j]` using the state transition
/// `x0' <- x1, x1' <- x0 + x1, i' <- i+1, j' <- j+1`.
/// Note: The `i, j` columns are only used to test the permutation argument.
#[derive(Copy, Clone)]
struct FibonacciStark<F: RichField + Extendable<D>, const D: usize> {
num_rows: usize,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> FibonacciStark<F, D> {
// The first public input is `x0`.
const PI_INDEX_X0: usize = 0;
// The second public input is `x1`.
const PI_INDEX_X1: usize = 1;
// The third public input is the second element of the last row, which should be equal to the
// `num_rows`-th Fibonacci number.
const PI_INDEX_RES: usize = 2;
fn new(num_rows: usize) -> Self {
Self {
num_rows,
_phantom: PhantomData,
}
}
/// Generate the trace using `x0, x1, 0, 1` as initial state values.
fn generate_trace(&self, x0: F, x1: F) -> Vec<PolynomialValues<F>> {
let mut trace_rows = (0..self.num_rows)
.scan([x0, x1, F::ZERO, F::ONE], |acc, _| {
let tmp = *acc;
acc[0] = tmp[1];
acc[1] = tmp[0] + tmp[1];
acc[2] = tmp[2] + F::ONE;
acc[3] = tmp[3] + F::ONE;
Some(tmp)
})
.collect::<Vec<_>>();
trace_rows[self.num_rows - 1][3] = F::ZERO; // So that column 2 and 3 are permutation of one another.
trace_rows_to_poly_values(trace_rows)
}
}
const COLUMNS: usize = 4;
const PUBLIC_INPUTS: usize = 3;
impl<F: RichField + Extendable<D>, const D: usize> Stark<F, D> for FibonacciStark<F, D> {
type EvaluationFrame<FE, P, const D2: usize> = StarkFrame<P, P::Scalar, COLUMNS, PUBLIC_INPUTS>
where
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>;
type EvaluationFrameTarget =
StarkFrame<ExtensionTarget<D>, ExtensionTarget<D>, COLUMNS, PUBLIC_INPUTS>;
fn eval_packed_generic<FE, P, const D2: usize>(
&self,
vars: &Self::EvaluationFrame<FE, P, D2>,
yield_constr: &mut ConstraintConsumer<P>,
) where
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>,
{
let local_values = vars.get_local_values();
let next_values = vars.get_next_values();
let public_inputs = vars.get_public_inputs();
// Check public inputs.
yield_constr.constraint_first_row(local_values[0] - public_inputs[Self::PI_INDEX_X0]);
yield_constr.constraint_first_row(local_values[1] - public_inputs[Self::PI_INDEX_X1]);
yield_constr.constraint_last_row(local_values[1] - public_inputs[Self::PI_INDEX_RES]);
// x0' <- x1
yield_constr.constraint_transition(next_values[0] - local_values[1]);
// x1' <- x0 + x1
yield_constr.constraint_transition(next_values[1] - local_values[0] - local_values[1]);
}
fn eval_ext_circuit(
&self,
builder: &mut CircuitBuilder<F, D>,
vars: &Self::EvaluationFrameTarget,
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
) {
let local_values = vars.get_local_values();
let next_values = vars.get_next_values();
let public_inputs = vars.get_public_inputs();
// Check public inputs.
let pis_constraints = [
builder.sub_extension(local_values[0], public_inputs[Self::PI_INDEX_X0]),
builder.sub_extension(local_values[1], public_inputs[Self::PI_INDEX_X1]),
builder.sub_extension(local_values[1], public_inputs[Self::PI_INDEX_RES]),
];
yield_constr.constraint_first_row(builder, pis_constraints[0]);
yield_constr.constraint_first_row(builder, pis_constraints[1]);
yield_constr.constraint_last_row(builder, pis_constraints[2]);
// x0' <- x1
let first_col_constraint = builder.sub_extension(next_values[0], local_values[1]);
yield_constr.constraint_transition(builder, first_col_constraint);
// x1' <- x0 + x1
let second_col_constraint = {
let tmp = builder.sub_extension(next_values[1], local_values[0]);
builder.sub_extension(tmp, local_values[1])
};
yield_constr.constraint_transition(builder, second_col_constraint);
}
fn constraint_degree(&self) -> usize {
2
}
fn permutation_pairs(&self) -> Vec<PermutationPair> {
vec![PermutationPair::singletons(2, 3)]
}
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use plonky2::field::extension::Extendable;
use plonky2::field::types::Field;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::witness::PartialWitness;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::circuit_data::CircuitConfig;
use plonky2::plonk::config::{AlgebraicHasher, GenericConfig, PoseidonGoldilocksConfig};
use plonky2::util::timing::TimingTree;
use crate::config::StarkConfig;
use crate::fibonacci_stark::FibonacciStark;
use crate::proof::StarkProofWithPublicInputs;
use crate::prover::prove;
use crate::recursive_verifier::{
add_virtual_stark_proof_with_pis, set_stark_proof_with_pis_target,
verify_stark_proof_circuit,
};
use crate::stark::Stark;
use crate::stark_testing::{test_stark_circuit_constraints, test_stark_low_degree};
use crate::verifier::verify_stark_proof;
fn fibonacci<F: Field>(n: usize, x0: F, x1: F) -> F {
(0..n).fold((x0, x1), |x, _| (x.1, x.0 + x.1)).1
}
#[test]
fn test_fibonacci_stark() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type S = FibonacciStark<F, D>;
let config = StarkConfig::standard_fast_config();
let num_rows = 1 << 5;
let public_inputs = [F::ZERO, F::ONE, fibonacci(num_rows - 1, F::ZERO, F::ONE)];
let stark = S::new(num_rows);
let trace = stark.generate_trace(public_inputs[0], public_inputs[1]);
let proof = prove::<F, C, S, D>(
stark,
&config,
trace,
&public_inputs,
&mut TimingTree::default(),
)?;
verify_stark_proof(stark, proof, &config)
}
#[test]
fn test_fibonacci_stark_degree() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type S = FibonacciStark<F, D>;
let num_rows = 1 << 5;
let stark = S::new(num_rows);
test_stark_low_degree(stark)
}
#[test]
fn test_fibonacci_stark_circuit() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type S = FibonacciStark<F, D>;
let num_rows = 1 << 5;
let stark = S::new(num_rows);
test_stark_circuit_constraints::<F, C, S, D>(stark)
}
#[test]
fn test_recursive_stark_verifier() -> Result<()> {
init_logger();
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type S = FibonacciStark<F, D>;
let config = StarkConfig::standard_fast_config();
let num_rows = 1 << 5;
let public_inputs = [F::ZERO, F::ONE, fibonacci(num_rows - 1, F::ZERO, F::ONE)];
let stark = S::new(num_rows);
let trace = stark.generate_trace(public_inputs[0], public_inputs[1]);
let proof = prove::<F, C, S, D>(
stark,
&config,
trace,
&public_inputs,
&mut TimingTree::default(),
)?;
verify_stark_proof(stark, proof.clone(), &config)?;
recursive_proof::<F, C, S, C, D>(stark, proof, &config, true)
}
fn recursive_proof<
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
S: Stark<F, D> + Copy,
InnerC: GenericConfig<D, F = F>,
const D: usize,
>(
stark: S,
inner_proof: StarkProofWithPublicInputs<F, InnerC, D>,
inner_config: &StarkConfig,
print_gate_counts: bool,
) -> Result<()>
where
InnerC::Hasher: AlgebraicHasher<F>,
{
let circuit_config = CircuitConfig::standard_recursion_config();
let mut builder = CircuitBuilder::<F, D>::new(circuit_config);
let mut pw = PartialWitness::new();
let degree_bits = inner_proof.proof.recover_degree_bits(inner_config);
let pt = add_virtual_stark_proof_with_pis(&mut builder, stark, inner_config, degree_bits);
set_stark_proof_with_pis_target(&mut pw, &pt, &inner_proof);
verify_stark_proof_circuit::<F, InnerC, S, D>(&mut builder, stark, pt, inner_config);
if print_gate_counts {
builder.print_gate_counts(0);
}
let data = builder.build::<C>();
let proof = data.prove(pw)?;
data.verify(proof)
}
fn init_logger() {
let _ = env_logger::builder().format_timestamp(None).try_init();
}
}